

ZUGFeRD: the future of invoicing

iText Software

This book is for sale at http://leanpub.com/zugferdthefutureofinvoicing

This version was published on 2017-06-21

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2017 iText Software

http://leanpub.com/zugferdthefutureofinvoicing
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction . 1

1. ZUGFeRD: the core concepts . 2
The Portable Document Format . 2

PDF/A: long-term preservation of documents . 3
PDF as a format for invoices . 4

Electronic Data Interchange . 4
Electronic Business eXtensible Markup Language . 4
Uniform Business Language and the Core Components Library 5
The Cross Industry Invoice standard . 5
Importance of the evolution of EDI standards . 6

Zentraler User Guide des Forums elektronische Rechnung Deutschland 6
The ZUGFeRD Data Model . 6
The ZUGFeRD Format . 7
Bridging the Gap between SMBs and EDI . 7

2. Creating PDF/A files with iText . 9
Creating a regular PDF file . 9
Creating a Tagged PDF file . 11
Creating a PDF/A-3 level B file . 12
Creating a PDF/A-3 level A file . 14

3. A simple invoice database . 17
Database diagram . 17
Creating database POJOs . 18
Creating a POJO factory . 20
Testing the database . 24

4. Creating XML Invoices with iText . 25
Interfaces for the Basic and Comfort profile . 25
Getting and setting the data . 27

Basic and Comfort profile . 28
Basic profile . 29
Comfort profile . 31

CONTENTS

Validation of the data . 33
Creating an XML file with iText . 35

5. Creating PDF invoices (Basic profile) . 38
Creating PDF from scratch . 38

Adding the seller and buyer addresses . 41
Adding invoice lines . 43
Adding the totals . 45
Adding the payment info . 46

The final result . 47

6. Creating HTML invoices . 48
An XSL for Comfort XMLs . 48
Adding some simple CSS . 50
Transforming XML to HTML using XSL and Java . 52

7. Creating PDF invoices (Comfort) . 55
Converting XML to HTML, and HTML to PDF . 55
The final result . 57

Conclusion . 61

Introduction
Whenever I receive an invoice as a PDF document in my Inbox, I take a look at the Document
Properties of the file to find out which tool was used to create that invoice. I’m always happy when
I see that iText was used.

Next I check if the PDF is future-proof. That is: if it complies with the PDF/A standard, and if it can
easily be interpreted by a machine. Usually that’s not the case. That makes me less happy.

Only when I’ve performed these two simple checks, I look at the actual content of the invoice.
Whether or not that makes me happy, depends on the amount I have to pay.

In this tutorial,

• I’ll explain why conforming to the PDF/A standard is important,
• I’ll show you how you can assure that a machine can read and process the invoices you create,
and

• I’ll introduce the Central User Guide for Electronic Invoicing in Germany (ZUGFeRD), a
standard that was developed to meet these requirements.

Using some simple examples, I’ll demonstrate how you can easily create ZUGFeRD-compliant
invoices by applying some small changes to your iText-driven invoicing process.

1. ZUGFeRD: the core concepts
ZUGFeRD wasn’t created out of the blue. It builds on top of existing standards that describe the
Portable Document Format (PDF) and Electronic Data Interchange (EDI). Let’s take a look at these
standards before we dive into the specifics of the ZUGFeRD standard.

The Portable Document Format

In 2008, the PDF specification was published as an ISO standard: ISO 32000-1. This wasn’t the first
ISO standard for PDF. Figure 1.1 shows that there’s an umbrella of PDF standards, each having its
own specific purpose, often in the context of a specific sector or industry. ISO 32000 was written as
the core standard that is used as the basis for all the sub-standards under this umbrella.

Figure 1.1: PDF, an umbrella of standards

The Portable Document Format was originally designed by Adobe. The first version of the
specification was released in 1993. New versions were published on a regular basis, adding more
and more functionality. ISO 32000-1 was based on version 1.7 (2006) of Adobe’s PDF specification.

Due to the breadth of the PDF specification, developers of PDF software have a lot of freedom when
creating a PDF document. This results in many different flavors of PDF. For instance: to reduce
file size, it’s possible to make a document depend on external fonts. However, this can result in an
illegible or odd-looking page if those fonts are missing on the end user’s device. A PDF document
can contain JavaScript which can update PDF form fields in specific circumstances. Clearly these
are some PDF “features” to be avoided in the context of finalized invoices.

1. ZUGFeRD: the core concepts 3

PDF/A: long-term preservation of documents

ISO 19005, or PDF/A, was originally developed to meet long-term archival needs. Part 1 was released
in 2005. It was defined as a subset of version 1.4 of Adobe’s PDF specification (which, at that time,
wasn’t an ISO standard yet). It introduced a series of obligations and restrictions:

• The document needs to be self-contained: all fonts need to be embedded; external movie, sound
or other binary files are not allowed.

• The document needs to contain metadata in the eXtensible Metadata Platform (XMP) format:
ISO 16684 (XMP) describes how to embed XML metadata into a binary file, so that software
that doesn’t know how to interpret the binary data format can still extract the file’s metadata.

• Functionality that isn’t future-proof isn’t allowed: the PDF can’t contain any JavaScript and
may not be encrypted.

From the start, it was determined that approved parts of ISO 19005 could never become invalid. New,
subsequent parts would only define new, useful features.

ISO 19005-1:2005 (PDF/A-1) defined two conformance levels:

• Level B (“basic”): ensures that the visual appearance of a document will be preserved for the
long term.

• Level A (“accessible”): ensures that the visual appearance of a document will be preserved for
the long term, but also introduces structural and semantic properties. The PDF needs to be a
Tagged PDF.

ISO 19005-2:2011 (PDF/A-2) was introduced to have a PDF/A standard that was based on the ISO
standard (ISO 32000-1) instead of on Adobe’s PDF specification. PDF/A-2 also adds a handful of
features that were introduced in PDF 1.5, 1.6 and 1.7:

• Useful additions include: support for JPEG2000, Collections, object-level XMP, and optional
content.

• Useful improvements include: better support for transparency, comment types and annota-
tions, and digital signatures.

PDF/A-2 also defines an extra level besides Level A and Level B:

• Level U (“Unicode”): ensures that the visual appearance of a document will be preserved for
the long term, and that all text is stored in UNICODE.

ISO 19005-3:2012 (PDF/A-3) was an almost identical copy of PDF/A-2 (even the typos were copied).
There was only one difference with PDF/A-2: in PDF/A-3, attachments don’t need to be PDF/A. You
can attach any file to a PDF/A-3 document, for instance: an XLS file containing calculations of which
the results are used in the document, the original Word document that was used to create the PDF
document, and so on. The document itself needs to conform to all the obligations and restrictions of
the PDF/A specification, but these obligations and restrictions do not apply to its attachments.

1. ZUGFeRD: the core concepts 4

PDF as a format for invoices

All the qualities of the PDF/A standard are also highly desirable for invoices. Alas, PDF/A alone
doesn’t solve the problem of processing invoices (yet). Few PDF invoices today are structured; they
lack the information that is required for automatic extraction of key data such as the amount due,
addresses, taxes, wiring information, and so on.

If the PDF is Tagged, you already get some information about the semantics of the different content
elements in the document. You could apply some artificial intelligence to detect the subtotal, the
taxes and the grand total. But this will only work to a certain extend. Tagged PDF wasn’t designed
for this purpose. The process will never be flawless, especially if Optical Character Recognition
(OCR) is involved. Numbers can easily be misinterpreted: a zero can be read as the letter O, a 5 can
be scanned as a 6; It’s an error-prone process in an area where there’s little tolerance for errors.

Ideally, we’d create our invoice as a PDF/A-3 invoice and attach a document that contains all
the necessary data in a format that allows a machine to interpret the invoice without any human
intervention. To find a format that meets this requirement, let’s take a look at how large corporations
exchange data.

Electronic Data Interchange

For decades, large corporations have used EDI to exchange information with each other in the form
of structured data that is transmitted without (or withminimum)manual intervention. This required
bilateral arrangements between the companies, defining which data is to be exchanged and which
format is to be used. Implementing EDI isn’t trivial. In the case of small and medium businesses,
the low volume of transactions doesn’t justify the cost of putting in place an EDI system. Several
standardization organizations have tried to reduce this cost by introducing industry standards.

Electronic Business eXtensible Markup Language

In 1999, the United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT)
and the organization for the Advancement of Structured Information Standards (OASIS) started an
initiative that resulted in a suite of standards that were approved by the International Organization
for Standardization (ISO) in 2004. They were released under the general title ISO 15000: Electronic
Business eXtensible Markup Language (ebXML).

This standard enables enterprises in any industry, of any size, anywhere in the world to conduct
business over the internet. Originally, ISO 15000 consisted of these four parts:

• ISO 15000-1:2004: ebXML Collaborative Partner Profile Agreement
• ISO 15000-2:2004: ebXML Messaging Service Specification
• ISO 15000-3:2004: ebXML Registry Information Model
• ISO 15000-4:2004: ebXML Registry Services Specification

1. ZUGFeRD: the core concepts 5

The goal for these standards was to make EDI less expensive and less difficult to implement, by
providing companies with a standard method to exchange business messages, conduct trading
relationships, communicate data in common terms and define and register business processes.

OASIS and UN/CEFACT also developed a common set of semantic building blocks that represent
general types of business data. Existing business vocabularies were restructured and new business
vocabularies were created. Thesewere published in a fifth part of the ISO standard ISO 15000-5:2005,
the ebXML Core Components Technical Specification (CCTS).

Uniform Business Language and the Core Components Library

OASIS then went on to produce a data format in full conformance with the CCTS: the Universal
Business Language (UBL). UBL became the foundation of a number of successful international
frameworks such as ePrior, PEPPOL, and many other specifications. It’s an XML only specification
of which the data model is not normative.

UN/CEFACT released several versions of a Core Components Library (CCL) based on ISO 15000-5.
A CCL is a repository of easily reused generic business data components. It provides templates
discribing postal adresses, tax information, payment information, and so on. UBL uses Core
Components, but it’s an XML only specification. The Core Components of the CCL are syntax-
independent. They can be used to create syntax solutions other than XML.

In 2014, ISO released an update of part 5 of ISO 15000: ISO 15000-5:2014 ebXML Core Components
Specification (CCS). Unlike UBL, this specification is normative and syntax neutral.

The Cross Industry Invoice standard

ISO 15000-5:2014 and the CCLwere used by UN/CEFACT as the basis for specific business document
models, such as the Cross Industry Order (CIO), the Cross Industry Order Response (CIOR), the Cross
Industry Invoice (CII), and so on.

The goal of these uniform, standardized models is to permit the exchange of data electronically in a
syntax-independent, interoperable way, without any human intervention. Using the CII standard,
companies can easily process any number of invoices in an automated way, based on mutual
agreements on which data should be shared, and in which form, for instance using XML.

At the European level, the European Committee for Standardization (CEN) derived different
Message User Guides (MUG) from these standards, such as the Core Invoice Data Model MUG
which is a subset, derived from the CII standard. CEN Workshop Agreement (CWA) documents
CWA 16356-1, -2 and -3 describe the setup, content and data structures of a minimum scope in the
context of sending invoice data. The Core Invoice Data Model defines about 100 field types related
to an invoice.

1. ZUGFeRD: the core concepts 6

Importance of the evolution of EDI standards

Electronic Data Interchange has been standardized and simplified in such a way that it is no longer
impossible for small and medium businesses to implement. This has been recognized by the German
Forum for Electronic Invoicing (FeRD) who used the CII and CEN’sMessage User Guides as the basis
for the ZUGFeRD Model.

Zentraler User Guide des Forums elektronische
Rechnung Deutschland

The “Forum elektronische Rechnung Deutschland” (FeRD) is a German platform of associations,
ministries and companies promoting electronic invoicing. In 2014, FeRD published the Central User
Guide for Electronic Invoicing (ZUGFeRD) as a new standard for invoicing. This standard consists
of the ZUGFeRD data model describing which contents make up an invoice (the semantics) and the
ZUGFeRD format describing how these contents will be transferred.

The ZUGFeRD Data Model

For the data model, ZUGFeRD uses the CCI standard and CEN’s Message User Guides to which the
UN/CEFACT Naming and Design Rules (NDR) are applied, resulting in the ZUGFeRD XML schema.
Every invoice needs to contain an XML file that validates against this schema.

Figure 1.2 shows the three different profiles that are supported.

Figure 1.2: Semantic profile of the ZUGFeRD standard

1. ZUGFeRD: the core concepts 7

• The Comfort profile supports processing posting, payment and checking of invoices. The
information required to do so is present either in structured form or as qualified text. Other
data can be included as free text. Free text imposes no requirements in terms of coding of
the information itself, but qualified text needs to be accompanied by a code qualifying the
content.

• The Basic profile is a subset of the Comfort profile. It reduces the requirements for structured
data to the absolute minimum, such as posting and payment information. Other information
can be added as free text.

• The Extended profile is a superset of the Comfort profile. It covers the cross-industry
requirements as fully as possible. All relevant data is available either in structured form, or as
a qualified text field. Other data, such as a note on an advertising campaign, can be included
as free text.

ZUGFeRD Basic only supports commercial invoices, notifications and credit notes (code 380).
ZUGFeRD Comfort also supports debit and credit notes related to financial adjustments (code 84).
ZUGFeRD Extended also supports self-billed invoices and self-billed credit notes (code 389).

We’ll go into much more detail, explaining which data is required and what these codes are about,
when we discuss how to use iText to create invoices that conform to the Basic and the Comfort
profile.

The ZUGFeRD Format

PDF/A-3 was chosen for the ZUGFeRD format and as a rule each PDF/A-3 file contains one and only
one invoice. This PDF file will contain all data used for automated processing as an embedded XML
file (either conforming with the requirements of the Basic, Comfort, or the Extended profile). Due
to the nature of PDF/A-3, invoicees who want to process the PDF manually aren’t hindered by this
additional file; they can open the document in one of themany PDF viewers which come preinstalled
on virtually all PCs, smart phones and other devices. The fact that ZUGFeRD uses PDF/A also means
that the visual representation of the document is preserved for the long term.

We will take a closer look at how the XML file is embedded into the PDF file in the examples that
demonstrate how to create ZUGFeRD invoices with iText.

Bridging the Gap between SMBs and EDI

The aim of ZUGFeRD is to close the gap between the simple exchange of invoices as printed pages
or image files, and EDI processes, which consist purely of structured data. Figure 1.3, taken from
the ZUGFeRD specification, shows the spectrum. The more your process is EDI-friendly, the more
automation increases, but without a PDF page as part of the invoice, the less easy it becomes for
humans to consume the document.

1. ZUGFeRD: the core concepts 8

Figure 1.3: Closing the gap between paper and EDI

FeRD created ZUGFeRD to lower the threshold for small and medium businesses to implement EDI-
like invoicing processes, even if they only issue and receive a small number of invoices. Thanks to
ZUGFeRD, they will be able to exchange invoices with companies of any size without any prior
consultation or agreement.

iText wants to contribute to this evolution. Every small andmedium business is already able to create
invoices in the PDF format. With a tool such as iText, it’s not difficult to comply with the PDF/A
standard and to attach an XML attachment. Thanks to iText, even small and medium businesses can
afford to create ZUGFeRD compliant invoices.

World-wide implementation of the ZUGFeRD standard could yield financial, technical and opera-
tional benefits across the entire economy, regardless of organization size or nationality.

2. Creating PDF/A files with iText
Before we start creating invoices, let’s find out how to create a PDF document using iText, more
specifically: how to create a PDF document in the PDF/A-3 format.

Creating a regular PDF file

Creating a PDF file with iText 7 is very easy. It requires four simple steps:

1. Create a PdfDocument that writes PDF to a PdfWriter (low-level functionality),
2. Create a Document to which you can add simple building blocks (high-level functionality),
3. Add content to the Document in the form of building blocks¹,
4. Close the Document.

We’ll implement these four steps to create a PDF file that looks like the document shown in Figure
2.1:

Figure 2.1: Quick brown fox jumps over the lazy dog example: regular PDF

This PDF was created using the SimplePdf.java² example:

¹http://developers.itextpdf.com/content/itext-7-building-blocks
²https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/SimplePdf.java

http://developers.itextpdf.com/content/itext-7-building-blocks
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/SimplePdf.java
http://developers.itextpdf.com/content/itext-7-building-blocks
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/SimplePdf.java

2. Creating PDF/A files with iText 10

1 public void createPdf(String dest) throws IOException {

2 // step 1

3 PdfDocument pdfDocument = new PdfDocument(new PdfWriter(dest));

4 pdfDocument.setDefaultPageSize(PageSize.A4.rotate());

5 // step 2

6 Document document = new Document(pdfDocument);

7 // step 3

8 document.add(

9 new Paragraph()

10 .setFontSize(20)

11 .add(new Text("The quick brown "))

12 .add(new Image(ImageDataFactory.create(FOX)))

13 .add(new Text(" jumps over the lazy "))

14 .add(new Image(ImageDataFactory.create(DOG))));

15 // step 4

16 document.close();

17 }

We can easily discover the four steps in iText’s PDF creation process in this code snippet:

1. In line 3-4, we create a PdfDocument object for a PDF document with page size A4 in landscape
format. By default, the A4 page is in portrait; the rotate()method changes it into landscape.

2. In line 6, we create an instance of the Document class. PdfDocument is a low-level class that can
be used for low-level operations; Document is a high-level class to which we can add high-level
objects.

3. In lines 8 to 14, we compose content using high-level objects such as Paragraph, Text and
Image. We add this content to the document.

4. In line 16, we close the document.

This creates a regular PDF file. In Figure 2.2, we take a look at the Document Properties of the file.
At the bottom of the Description tab, we see Tagged PDF: No.

2. Creating PDF/A files with iText 11

Figure 2.2: Document properties regular PDF

When we look at this document, we see a sentence in which the words “fox” and “dog” are replaced
by images of a fox and a dog. Being human, we’ll read “The quick brown fox jumps over the lazy
dog”. A machine however, will only read “The quick brown jumps over the lazy” and won’t know
that the image of the fox and the dog are meant to be part of the sentence. This is a problem when
the document is accessed by people who are visually impaired. They depend on assistive technology
(AT) such as the “Read out loud” functionality in Adobe Reader. Only when the PDF is a properly
Tagged PDF, will AT be able to read the full sentence.

We’ll fix this problem partly by making some small changes to our code in the next couple of
examples.

Creating a Tagged PDF file

Let’s take a look at the TaggedPdf.java³ example. It is identical to SimplePdf.java⁴, except for step 1:

1 // step 1

2 PdfDocument pdfDocument = new PdfDocument(new PdfWriter(dest));

3 pdfDocument.setDefaultPageSize(PageSize.A4.rotate());

4 pdfDocument.setTagged();

³https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/TaggedPdf.java
⁴https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/SimplePdf.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/TaggedPdf.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/SimplePdf.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/TaggedPdf.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/SimplePdf.java

2. Creating PDF/A files with iText 12

We add a single line: pdfDocument.setTagged(). As we are using high level objects such as
Paragraph, Text, and Image, iText will mark that content as structured elements. A Paragraphwill be
marked as <P>, a Text object as and an Image as <Figure>. This adds semantical information.
The resulting document, shown in figure 2.3, looks identical to the one we had before, but we can
now see the structure of the sentence in the Tags panel when opening the PDF in Acrobat Reader.

Figure 2.3: Tags in a Tagged PDF

This doesn’t make the document accessible (yet). It’s still not possible to replace the images by a
meaningful and accurate word, but the structure of the paragraph can now be interpreted by a
machine (which wasn’t the case before), because a PDF parser can read a structure tree that indicates
that the images are part of the paragraph.

We can make the content accessible by providing alternate text for the images. But before we do so,
let’s take a close look at the PDF/A format.

Creating a PDF/A-3 level B file

A PDF/A file needs to be self-contained. In the previous examples, we didn’t specify a font. As a
result, the default font Helvetica was used. Helvetica is one of the 14 standard Type 1 fonts that are
assumed to be known by every PDF viewer. iText ships with 14 Adobe Font Metrics (AFM) files that
contain the font metrics that are needed to calculate the width of words and sentences. iText doesn’t
ship with the full fonts, so whenever Helvetica is used, that font isn’t embedded in the PDF.

• PDF/A requires that all fonts are embedded, so if we want to create a PDF/A-3 file, we’ll have
to provide a font file.

• PDF/A also requires an International Color Consortium (ICC) profile.

2. Creating PDF/A files with iText 13

We’ll introduce two constants with the paths to an ICC color file and a font file in the PdfA3b⁵
example:

public static final String FONT = "resources/fonts/OpenSans-Regular.ttf";

public static final String ICC = "resources/color/sRGB_CS_profile.icm";

We’ll need these files when we create the PDF.

• FreeSans.ttf is a OpenType font with TrueType outlines that looks very much like Helvetica.
• sRGB_CS_profile.icm is an ICC profile used to define an RGB color space.

Let’s take a look at the createPdf() method:

1 public void createPdf(String dest) throws IOException {

2 // step 1

3 PdfADocument pdfDocument = new PdfADocument(

4 new PdfWriter(dest), PdfAConformanceLevel.PDF_A_3B,

5 new PdfOutputIntent("Custom", "", "http://www.color.org",

6 "sRGB IEC61966-2.1", new FileInputStream(ICC)));

7 pdfDocument.setDefaultPageSize(PageSize.A4.rotate());

8 // step 2

9 Document document = new Document(pdfDocument);

10 // step 3

11 PdfFont font = PdfFontFactory.createFont(FONT, true);

12 document.add(new Paragraph().setFont(font).setFontSize(20)

13 .add(new Text("The quick brown "))

14 .add(new Image(ImageDataFactory.create(FOX)))

15 .add(new Text(" jumps over the lazy "))

16 .add(new Image(ImageDataFactory.create(DOG))));

17 // step 4

18 document.close();

19 }

What’s different in this code snippet when compared to our first example?

• We use a different PDF document object. Instead of creating an instance of PdfDocument, we
now use a PdfADocument (line 3) and we define the conformance level PDF_A_3B (line 4).

• An stream is created containing metadata in the eXtensible Metadata Platform (XMP). You
don’t see this in the code, but iText will add this metadata automatically since XMP is a
requirement for PDF/A documents.

⁵https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/PdfA3b.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/PdfA3b.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/PdfA3b.java

2. Creating PDF/A files with iText 14

• We define output intents. This is where we need the ICC profile (line 5-6).
• We embed the font. We use the FontFactory object to get a PdfFont object, making sure that
we set the embedded flag to true (line 12). We use the setFont() object on the Paragraph

instance so that the default font for all the Chunks added after the font is set, changes to this
embedded font (line 25-26).

As a result, we have the same document as before, but now it verifies as a PDF/A-3B document. See
figure 2.4.

Figure 2.4: a PDF/A-3B example

Making this document accessible requires a handful of extra changes.

Creating a PDF/A-3 level A file

We’ll conclude this chapter with the PdfA3a⁶ example:

1 public void createPdf(String dest) throws IOException {

2 // step 1

3 PdfADocument pdfDocument = new PdfADocument(

4 new PdfWriter(dest), PdfAConformanceLevel.PDF_A_3A,

5 new PdfOutputIntent("Custom", "", "http://www.color.org",

6 "sRGB IEC61966-2.1", new FileInputStream(ICC)));

7 pdfDocument.setDefaultPageSize(PageSize.A4.rotate());

8 pdfDocument.setTagged();

9 pdfDocument.getDocumentInfo().setTitle("The fox and the dog");

⁶https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/PdfA3a.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/PdfA3a.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pdfa/PdfA3a.java

2. Creating PDF/A files with iText 15

10 pdfDocument.getCatalog().setViewerPreferences(

11 new PdfViewerPreferences().setDisplayDocTitle(true));

12 pdfDocument.getCatalog().setLang(new PdfString("en-US"));

13 // step 2

14 Document document = new Document(pdfDocument);

15 // step 3

16 PdfFont font = PdfFontFactory.createFont(FONT, true);

17 Image fox = new Image(ImageDataFactory.create(FOX));

18 fox.getAccessibilityProperties().setAlternateDescription("fox");

19 Image dog = new Image(ImageDataFactory.create(DOG));

20 dog.getAccessibilityProperties().setAlternateDescription("dog");

21 document.add(

22 new Paragraph()

23 .setFont(font)

24 .setFontSize(20)

25 .add(new Text("The quick brown "))

26 .add(fox)

27 .add(new Text(" jumps over the lazy "))

28 .add(dog));

29 // step 4

30 document.close();

31 }

We’ve applied the following changes when compared to the previous example:

• We change the conformance level to PDF_A_3A. That’s just a matter of changing one parameter
in the PdfADocument constructor (line 4).

• We create a Tagged PDF. On line 8, we recognize the setTagged() method. This will create
<P>, and <Figure> tags. (This is a PDF/A-3a and a PDF/UA requirement.)

• We add a title to the metadata. In line 9, we set the title to “The fox and the dog.” (This is a
PDF/UA requirement, not a PDF/A requirement.)

• We make sure the document title is displayed. We do this by setting the viewer preference
DisplayDocTitle in line 10-11. (This is a PDF/UA requirement, not a PDF/A requirement.)

• We define the language used in the document.On line 12, we tell the document that its contents
are in American English. (This is a PDF/UA requirement, not a PDF/A requirement.)

• We provide Alternate text for images.On lines 18 and 20, we tell the images that they represent
a “fox” and a “dog” by defining alternate text. (This is a PDF/UA requirement.)

When we look at the document shown in figure 2.5, we see that the document has structure and the
file knows that the image of a dog represents the dog. Just hover over the image and you’ll see the
alternate text appear as a tool tip.

2. Creating PDF/A files with iText 16

Figure 2.5: a PDF/A-3A example

The document is now accessible. Mind the title that is shown in the title bar, and the tooltip “dog”
that is shown when you hover over the image of the dog. When the document is read using a AT, it
will now read “The quick brown fox jumps over the lazy dog.”

If you look at the left panel, you can see that the document is a PDF/A-3A document as
well as a PDF/UA document, because we also introduced some features that are required
by the PDF/UA standard. Adobe Acrobat can’t verify the compliance with these standards.
PDF/UA in general can’t be verified programmatically because it takes a human to check
whether a document is properly tagged. Incidentally, the PDF/A-3 files we’ve created are
also compliant with the PDF/A-2 standard, because we didn’t add any attachments yet.
They are compliant with PDF/A-1 too, because we didn’t use any of the new functionality
introduced in PDF/A-2.

Once we create PDFs that represent invoices, we’ll want to add an XML file that conforms to the
ZUGFeRD model. Before we can do so, we need a database with invoice data.

3. A simple invoice database
Usually, all the data about your products, customers, sales, pricing, and so on, will be stored in a
Customer Relationship Management (CRM) system. As this is a tutorial with examples that anyone
should be able to download and execute without depending on a specific CRM, we’ve created a very
basic invoice database that can be accessed using Hyper SQL Database (hsqldb).

Database diagram

Figure 3.1 shows the minimal set of tables and fields that we’ll use for the examples in the next
couple of chapters.

Figure 3.1: Simple invoice database schema

We’ll work with only four tables:

3. A simple invoice database 18

• INVOICE: every record contains an id and an invoice date. The customer id refers to the
CUSTOMER table.

• CUSTOMER: every record contains an id, a first name, last name, street, postal code, city and
country id.

• ITEM: an invoice will involve one or more items. The invoice id refers to the INVOICE table;
item is a sequential number for each separate invoice line. Product id refers to the PRODUCT
table; the quantity field tells you how many products are being purchased.

• PRODUCT: every record contains an id, a name, a price and a VAT percentage.

In the real world, CRM databases contain much more information, but for the sake of this tutorial,
we want to keep the complexity as low as possible.

• We won’t create a country table,
• We’ll assume that the customers are individuals without a company id,
• We won’t store the address of the seller in our database,
• And so on.

This is not a tutorial on how to build a CRM system. We just need some data for our examples.

We will access our database using JDBC, and to make things simple, we’ll work with a series of Plain
Old Java Objects (POJO).

Creating database POJOs

We start by creating the classes Invoice⁷, Customer⁸, Item⁹, and Product¹⁰. These are our POJOs:
each class corresponds with a table in our database and consists of a series of member-variables (one
for each field) and the corresponding getters and setters.

For instance: the body of the Product¹¹ class looks like this:

⁷https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
⁸https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
⁹https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Item.java
¹⁰https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
¹¹https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Item.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Item.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java

3. A simple invoice database 19

1 // member-variables

2 protected int id;

3 protected String name;

4 protected double price;

5 protected double vat;

6 // getters and setters

7 public int getId() {

8 return id;

9 }

10 public void setId(int id) {

11 this.id = id;

12 }

13 public String getName() {

14 return name;

15 }

16 public void setName(String name) {

17 this.name = name;

18 }

19 public double getPrice() {

20 return price;

21 }

22 public void setPrice(double price) {

23 this.price = price;

24 }

25 public double getVat() {

26 return vat;

27 }

28 public void setVat(double vat) {

29 this.vat = vat;

30 }

We’ll also add a toString() method that renders this content as a String value:

1 public String toString() {

2 StringBuilder sb = new StringBuilder();

3 sb.append("\t(").append(id).append(")\t").append(name).append("\t")

4 .append(price).append("\u20ac\tvat ").append(vat).append("%");

5 return sb.toString();

6 }

Once we have created such a class for every table, we create a series of queries that will return

3. A simple invoice database 20

Invoice¹² objects. An Invoice¹³ object contains a Customer¹⁴ object and a list of Item¹⁵ objects, each
of which refers to a Product¹⁶ object.

Creating a POJO factory

When working with hsqldb, all the data is stored in a .script file. In our case, the file is named
invoices.script.We’ll write a PojoFactory¹⁷ class that connects to this database and that initializes
a series of prepared statements:

1 protected Connection connection;

2 protected HashMap<Integer, Customer> customerCache

3 = new HashMap<Integer, Customer>();

4 protected HashMap<Integer, Product> productCache

5 = new HashMap<Integer, Product>();

6 protected PreparedStatement getCustomer;

7 protected PreparedStatement getProduct;

8 protected PreparedStatement getItems;

9 // constructor

10 private PojoFactory() throws ClassNotFoundException, SQLException {

11 Class.forName("org.hsqldb.jdbcDriver");

12 connection = DriverManager.getConnection(

13 "jdbc:hsqldb:resources/zugferd/db/invoices", "SA", "");

14 getCustomer = connection.prepareStatement(

15 "SELECT * FROM Customer WHERE id = ?");

16 getProduct = connection.prepareStatement(

17 "SELECT * FROM Product WHERE id = ?");

18 getItems = connection.prepareStatement(

19 "SELECT * FROM Item WHERE invoiceid = ?");

20 }

Let’s take a closer look at the member-variables in the PojoFactory¹⁸ class:

• In line 1,we have a connection object that is an object of type java.sql.Connection. We load
the hsqldb database driver in line 11 and create the connection in lines 12 and 13. In our case,
the invoices.script is stored in the folder db, which is a subdirectory of the folder resources

¹²https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
¹³https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
¹⁴https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
¹⁵https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Item.java
¹⁶https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
¹⁷https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
¹⁸https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Item.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Item.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java

3. A simple invoice database 21

which is in turn a subdirectory of the working directory of our Java Virtual Machine (JVM).
The username and password of that database are "SA" and "".

• In lines 2-3 and 4-5, we create a cache for Customer objects and a cache for Product objects
by storing an integer (the id of a record) and the object containing the data of a record in
HashMap objects. That way, we won’t always have to execute a query on the database when
a Customer or a Product is needed more than once; we can just fetch it from the HashMap

that caches these objects. Obviously, this will only work if we never change any record in our
database. Please keep in mind that this is just a demo database and some demo code. In the
real world, your database and database access may be completely different.

• In lines 6, 7, and 8,we have three prepared statements. These are defined in lines 14-15, 16-17,
and 18-19. As you can see, these are simple SELECT statements that return all the fields from
the records in the tables CUSTOMER, PRODUCT, and ITEM based in an id.

You can get all the invoices at once, using the getInvoices() method. This method selects all the
fields from all the records in the INVOICE table:

1 public List<Invoice> getInvoices() throws SQLException {

2 List<Invoice> invoices = new ArrayList<Invoice>();

3 Statement stm = connection.createStatement();

4 ResultSet rs = stm.executeQuery("SELECT * FROM Invoice");

5 while (rs.next()) {

6 invoices.add(getInvoice(rs));

7 }

8 stm.close();

9 return invoices;

10 }

The getInvoice() method will perform several sub-queries:

1 public Invoice getInvoice(ResultSet rs) throws SQLException {

2 Invoice invoice = new Invoice();

3 invoice.setId(rs.getInt("id"));

4 invoice.setCustomer(getCustomer(rs.getInt("customerid")));

5 List<Item> items = getItems(rs.getInt("id"));

6 invoice.setItems(items);

7 double total = 0;

8 for (Item item : items)

9 total += item.getCost();

10 invoice.setTotal(total);

11 invoice.setInvoiceDate(rs.getDate("invoicedate"));

12 return invoice;

13 }

3. A simple invoice database 22

You see that we even calculate the total sum of the invoice. This is a value that you’d usually store
in your database redundantly, to avoid that the total invoice price of an old invoice changes when
you introduce new prices for products mentioned on that old invoice. Once again: we have kept our
database as minimal as possible.

The Customer object that corresponds with this invoice, is obtained with the getCustomer()method:

1 public Customer getCustomer(int id) throws SQLException {

2 if (customerCache.containsKey(id))

3 return customerCache.get(id);

4 getCustomer.setInt(1, id);

5 ResultSet rs = getCustomer.executeQuery();

6 if (rs.next()) {

7 Customer customer = new Customer();

8 customer.setId(id);

9 customer.setFirstName(rs.getString("FirstName"));

10 customer.setLastName(rs.getString("LastName"));

11 customer.setStreet(rs.getString("Street"));

12 customer.setPostalcode(rs.getString("Postalcode"));

13 customer.setCity(rs.getString("City"));

14 customer.setCountryId(rs.getString("CountryID"));

15 customerCache.put(id, customer);

16 return customer;

17 }

18 return null;

19 }

If the id is found in the cache, we return the corresponding Customer¹⁹ object. If not, we perform a
query using one of our prepared statements, and we store the resulting Customer²⁰ instance in the
cache before returning it.

When populating the Invoice²¹ object, we get a List of Item objects using the getItems()method:

¹⁹https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
²⁰https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
²¹https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Customer.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java

3. A simple invoice database 23

1 public List<Item> getItems(int invoiceid) throws SQLException {

2 List items = new ArrayList<Item>();

3 getItems.setInt(1, invoiceid);

4 ResultSet rs = getItems.executeQuery();

5 while (rs.next()) {

6 items.add(getItem(rs));

7 }

8 return items;

9 }

This method calls the getItem() method for every invoice line that belongs to a specific Invoice²²:

1 public Item getItem(ResultSet rs) throws SQLException {

2 Item item = new Item();

3 item.setItem(rs.getInt("Item"));

4 Product product = getProduct(rs.getInt("ProductId"));

5 item.setProduct(product);

6 item.setQuantity(rs.getInt("Quantity"));

7 item.setCost(item.getQuantity() * product.getPrice());

8 return item;

9 }

The getItem() method also fetches the corresponding Product²³:

1 public Product getProduct(int id) throws SQLException {

2 if (productCache.containsKey(id))

3 return productCache.get(id);

4 getProduct.setInt(1, id);

5 ResultSet rs = getProduct.executeQuery();

6 if (rs.next()) {

7 Product product = new Product();

8 product.setId(id);

9 product.setName(rs.getString("Name"));

10 product.setPrice(rs.getDouble("Price"));

11 product.setVat(rs.getDouble("Vat"));

12 productCache.put(id, product);

13 return product;

14 }

15 return null;

16 }

²²https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
²³https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Product.java

3. A simple invoice database 24

Now we have everything we need to retrieve all the invoice data that is stored in our very simple
invoice database.

Testing the database

Before we use this database to create ZUGFeRD XMLs and invoices, let’s run the DatabaseTest²⁴
example to test the database:

1 public static void main(String[] args) throws SQLException {

2 PojoFactory factory = PojoFactory.getInstance();

3 List<Invoice> invoices = factory.getInvoices();

4 for (Invoice invoice : invoices)

5 System.out.println(invoice.toString());

6 factory.close();

7 }

We use the PojoFactory²⁵ to get a List of Invoice²⁶ objects and we write the content of such an
object to the System.out. The result will be a sequence of text snippets (one for each invoice) that
look like this:

Invoice id: 4 Date: 2015-04-01 Total cost: 1507.0€

Customer: 30

First Name: Bill

Last Name: Sommer

Street: 362 - 20th Ave.

City: BE 9000 Ghent

#0 (28) Running jersey 8.0€ vat 21.0% Quantity: 9 Cost: 72.0€

#1 (35) Golf polo 8.0€ vat 21.0% Quantity: 1 Cost: 8.0€

#2 (41) Threadmill 600.0€ vat 21.0% Quantity: 2 Cost: 1200.0€

#3 (23) Pro steel dartboard 25.0€ vat 21.0% Quantity: 2 Cost: 50.0€

#4 (9) My First Cookbook 17.0€ vat 6.0% Quantity: 1 Cost: 17.0€

#5 (37) Golf kit 80.0€ vat 21.0% Quantity: 2 Cost: 160.0€

This already looks more or less like an invoice, doesn’t it? Now let’s find out how all this data fits
into the ZUGFeRD data model.

²⁴https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/DatabaseTest.java
²⁵https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
²⁶https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/DatabaseTest.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/DatabaseTest.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java

4. Creating XML Invoices with iText
In chapter 1, we discussed XML standards for invoicing and we explained that ZUGFeRD is based
on the Cross Industry Invoice (CII) standard and the Message User Guides (MUG) from CEN. In this
chapter, we’ll create a series of such invoices using iText.

Interfaces for the Basic and Comfort profile

iText ships with two interfaces that can be found in the com.itextpdf.text.zugferd.profiles

package (shipped with the pdfInvoice add-on²⁷):

• IBasicProfile: contains 56 get() methods for you to implement.
• IComfortProfile extends the IBasicProfile interface and adds 89 more methods for you to
implement (144 in total).

These methods look like this:

1 public String getSellerName();

2 public String getSellerPostcode();

3 public String getSellerLineOne();

4 public String getSellerLineTwo();

5 public String getSellerCityName();

6 public String getSellerCountryID();

7 public String[] getSellerTaxRegistrationID();

8 public String[] getSellerTaxRegistrationSchemeID();

As we’re dealing with XML and as XML consists of data stored as text, most of the methods expect
that you return String values, or arrays of String values, even when the data consists of numbers.
In cases where dates or Boolean values are involved, the method has a Date, a Date[], a boolean, a
Boolean[], or a Boolean[][] as return type.

iText ships with an implementation of these interfaces: BasicProfileImp implements the IBa-

sicProfile interface; ComfortProfileImp extends BasicProfileImp and implements the ICom-

fortProfile interface. These classes store all the data in boolean, Date, String, List<String>,
List<String[]>, List<Date>, List<Boolean>, or List<Boolean[]> member-variables and provide
set() methods to populate these variables. For instance:

²⁷http://itextpdf.com/itext7/pdfInvoice

http://itextpdf.com/itext7/pdfInvoice
http://itextpdf.com/itext7/pdfInvoice

4. Creating XML Invoices with iText 26

1 public void setSellerName(String sellerName) {

2 this.sellerName = sellerName;

3 }

4 public void setSellerPostcode(String sellerPostcode) {

5 this.sellerPostcode = sellerPostcode;

6 }

7 public void setSellerLineOne(String sellerLineOne) {

8 this.sellerLineOne = sellerLineOne;

9 }

10 public void setSellerLineTwo(String sellerLineTwo) {

11 this.sellerLineTwo = sellerLineTwo;

12 }

13 public void setSellerCityName(String sellerCityName) {

14 this.sellerCityName = sellerCityName;

15 }

16 public void setSellerCountryID(String sellerCountryID) {

17 this.sellerCountryID = sellerCountryID;

18 }

19 public void addSellerTaxRegistration(String schemeID, String taxId) {

20 sellerTaxRegistrationSchemeID.add(schemeID);

21 sellerTaxRegistrationID.add(taxId);

22 }

The provided values are used to implement the getter methods defined in the interface:

1 public String getSellerName() {

2 return sellerName;

3 }

4 public String getSellerPostcode() {

5 return sellerPostcode;

6 }

7 public String getSellerLineOne() {

8 return sellerLineOne;

9 }

10 public String getSellerLineTwo() {

11 return sellerLineTwo;

12 }

13 public String getSellerCityName() {

14 return sellerCityName;

15 }

16 public String getSellerCountryID() {

17 return sellerCountryID;

4. Creating XML Invoices with iText 27

18 }

19 public String[] getSellerTaxRegistrationID() {

20 return to1DArray(sellerTaxRegistrationID);

21 }

22 public String[] getSellerTaxRegistrationSchemeID() {

23 return to1DArray(sellerTaxRegistrationSchemeID);

24 }

Not all the getters need to be fully implemented. Some data is optional in the Basic and Comfort
profile. For instance, it is perfectly OK to implement some of the methods like this:

1 public Date getBillingStartDateTime() {

2 return null;

3 }

4 public String getBillingStartDateTimeFormat() {

5 return null;

6 }

7 public Date getBillingEndDateTime() {

8 return null;

9 }

10 public String getBillingEndDateTimeFormat() {

11 return null;

12 }

How you implement these interfaces will largely depend on the CRM you’re using. You’ll have
to query its database and use the results of that query to implement the methods of the interface
corresponding with the profile you want to support.

Getting and setting the data

In this tutorial, we’ll use BasicProfileImp and ComfortProfileImp (the IBasicProfile and
IComfortProfile implementations that ship with iText) to store the information from the database
we’ve discussed in chapter 3. See the InvoiceData²⁸ class that we’ll use in the next handful of
examples.

²⁸https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/data/InvoiceData.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/data/InvoiceData.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/data/InvoiceData.java

4. Creating XML Invoices with iText 28

1 public InvoiceData() {

2 }

3 public IBasicProfile createBasicProfileData(Invoice invoice) {

4 BasicProfileImp profileImp = new BasicProfileImp();

5 importData(profileImp, invoice);

6 importBasicData(profileImp, invoice);

7 return profileImp;

8 }

9 public IComfortProfile createComfortProfileData(Invoice invoice) {

10 ComfortProfileImp profileImp = new ComfortProfileImp();

11 importData(profileImp, invoice);

12 importComfortData(profileImp, invoice);

13 return profileImp;

14 }

We don’t pass any data to the InvoiceData constructor. Instead, we pass our Invoice POJO to the
createBasicProfileData() or the createComfortProfile() method to obtain an IBasicProfile

or IComfortProfile implementation.

Internally, the default BasicProfileImp or ComfortProfileImp implementations are used. These
data containers are populated using the importData(), importBasicData() and importComfort-

Data() methods.

Basic and Comfort profile

The importData()method deals with data that is relevant for both the Basic and the Comfort profile:

1 public void importData(BasicProfileImp profileImp, Invoice invoice) {

2 profileImp.setTest(true);

3 profileImp.setId(String.format("I/%05d", invoice.getId()));

4 profileImp.setName("INVOICE");

5 profileImp.setTypeCode(DocumentTypeCode.COMMERCIAL_INVOICE);

6 profileImp.setDate(invoice.getInvoiceDate(), DateFormatCode.YYYYMMDD);

7 profileImp.setSellerName("Das Company");

8 profileImp.setSellerLineOne("ZUG Business Center");

9 profileImp.setSellerLineTwo("Highway 1");

10 profileImp.setSellerPostcode("9000");

11 profileImp.setSellerCityName("Ghent");

12 profileImp.setSellerCountryID("BE");

13 profileImp.addSellerTaxRegistration(

14 TaxIDTypeCode.FISCAL_NUMBER, "201/113/40209");

15 profileImp.addSellerTaxRegistration(TaxIDTypeCode.VAT, "BE123456789");

4. Creating XML Invoices with iText 29

16 Customer customer = invoice.getCustomer();

17 profileImp.setBuyerName(String.format("%s, %s",

18 customer.getLastName(), customer.getFirstName()));

19 profileImp.setBuyerPostcode(customer.getPostalcode());

20 profileImp.setBuyerLineOne(customer.getStreet());

21 profileImp.setBuyerCityName(customer.getCity());

22 profileImp.setBuyerCountryID(customer.getCountryId());

23 profileImp.setPaymentReference(String.format("%09d", invoice.getId()));

24 profileImp.setInvoiceCurrencyCode("EUR");

25 }

As you can see, we add some of the data, such as the name of the seller, in a hard-coded way.
Obviously, this should be avoided in a real-world implementation.

We also use some constants such as DocumentTypeCode.COMMERCIAL_INVOICE, DateFormatCode.YYYYMMDD,
and TaxIDTypeCode.VAT. DocumentTypeCode, DateFormatCode, TaxIDTypeCode and many other
code list classes can be found in the com.itextpdf.text.zugferd.checkers packages. They all
implement the CodeValidation class. This abstract class contains a check() method that throws
an InvalidCodeException if the wrong code is provided. We’ll look at these checkers in more detail
in a moment.

Basic profile

All data that is necessary for the Basic profile is also necessary for the Comfort profile, but due to
some differences between Basic and Comfort, the implementation of these profiles requires different
setters in iText.

1 public void importBasicData(BasicProfileImp profileImp, Invoice invoice) {

2 profileImp.addNote(new String[]{

3 "This is a test invoice.\nNothing on this invoice is real."

4 + "\nThis invoice is part of a tutorial."});

5 profileImp.addPaymentMeans("", "", "BE 41 7360 0661 9710",

6 "", "", "KREDBEBB", "", "KBC");

7 profileImp.addPaymentMeans("", "", "BE 56 0015 4298 7888",

8 "", "", "GEBABEBB", "", "BNP Paribas");

9 Map<Double,Double> taxes = new TreeMap<Double, Double>();

10 double tax;

11 for (Item item : invoice.getItems()) {

12 tax = item.getProduct().getVat();

13 if (taxes.containsKey(tax)) {

14 taxes.put(tax, taxes.get(tax) + item.getCost());

15 }

4. Creating XML Invoices with iText 30

16 else {

17 taxes.put(tax, item.getCost());

18 }

19 profileImp.addIncludedSupplyChainTradeLineItem(

20 format4dec(item.getQuantity()), "C62", item.getProduct().getName());

21 }

22 double total, tA;

23 double ltN = 0;

24 double ttA = 0;

25 double gtA = 0;

26 for (Map.Entry<Double, Double> t : taxes.entrySet()) {

27 tax = t.getKey();

28 total = round(t.getValue());

29 gtA += total;

30 tA = round((100 * total) / (100 + tax));

31 ttA += (total - tA);

32 ltN += tA;

33 profileImp.addApplicableTradeTax(format2dec(total - tA), "EUR",

34 TaxTypeCode.VALUE_ADDED_TAX, format2dec(tA), "EUR", format2dec(tax));

35 }

36 profileImp.setMonetarySummation(format2dec(ltN), "EUR",

37 format2dec(0), "EUR",

38 format2dec(0), "EUR",

39 format2dec(ltN), "EUR",

40 format2dec(ttA), "EUR",

41 format2dec(gtA), "EUR");

42 }

This is typical for the Basic profile:

• The Basic profile allows free text in the header, see line 28-30: “This is a test invoice. Nothing
on this invoice is real. This invoice is part of a tutorial.”

• You don’t need that much information regarding the payment means.
• You don’t need that much information regarding the line items (the invoice lines).

Note that we loop over the different Item objects to calculate the monetary summation:

• the total amount of the line items (line 62),
• the tax basis amount (line 65), which is total of the line items after taking into account the
charge total amount (line 63) and the allowance total amount (line 64), which are 0 in this
case,

4. Creating XML Invoices with iText 31

• the total tax amount (line 66), and
• the grand total (line 67).

Note that we use some helper methods to format numbers and percentages:

1 public static double round(double d) {

2 d = d * 100;

3 long tmp = Math.round(d);

4 return (double) tmp / 100;

5 }

6 public static String format2dec(double d) {

7 return String.format("%.2f", d);

8 }

9 public static String format4dec(double d) {

10 return String.format("%.4f", d);

11 }

In some cases, numbers need to be expressed using 2 decimals; in other cases, numbers need to be
expressed using 4 decimals. Once you create the XML, iText will throw an InvalidCodeException

if you pass a numeric value with the wrong number of decimals.

Comfort profile

When we look at the importComfortData() method, we see that much more data can be provided.
For instance: the notes in the header need to consist of qualified text. This means that we
have to describe what the note is about using a code. In this case, we used FreeTextSubject-

Code.REGULATORY_INFORMATION (see line 5).

1 public void importComfortData(ComfortProfileImp profileImp, Invoice invoice) {

2 profileImp.addNote(new String[]{

3 "This is a test invoice.\nNothing on this invoice is real."

4 + "\nThis invoice is part of a tutorial."},

5 FreeTextSubjectCode.REGULATORY_INFORMATION);

6 profileImp.addPaymentMeans(

7 PaymentMeansCode.PAYMENT_TO_BANK_ACCOUNT,

8 new String[]{"This is the preferred bank account."},

9 "", "",

10 "", "",

11 "BE 41 7360 0661 9710", "", "",

12 "", "", "",

13 "KREDBEBB", "", "KBC");

4. Creating XML Invoices with iText 32

14 profileImp.addPaymentMeans(

15 PaymentMeansCode.PAYMENT_TO_BANK_ACCOUNT,

16 new String[]{"Use this as an alternative account."},

17 "", "",

18 "", "",

19 "BE 56 0015 4298 7888", "", "",

20 "", "", "",

21 "GEBABEBB", "", "BNP Paribas");

22 Map<Double,Double> taxes = new TreeMap<Double, Double>();

23 double tax;

24 int counter = 0;

25 for (Item item : invoice.getItems()) {

26 counter++;

27 tax = item.getProduct().getVat();

28 if (taxes.containsKey(tax)) {

29 taxes.put(tax, taxes.get(tax) + item.getCost());

30 }

31 else {

32 taxes.put(tax, item.getCost());

33 }

34 profileImp.addIncludedSupplyChainTradeLineItem(

35 String.valueOf(counter),

36 null,

37 format4dec(item.getProduct().getPrice()), "EUR", null, null,

38 null, null, null, null,

39 null, null, null, null,

40 format4dec(item.getQuantity()), "C62",

41 new String[]{TaxTypeCode.VALUE_ADDED_TAX},

42 new String[1],

43 new String[]{TaxCategoryCode.STANDARD_RATE},

44 new String[]{format2dec(item.getProduct().getVat())},

45 format2dec(item.getCost()), "EUR",

46 null, null,

47 String.valueOf(item.getProduct().getId()), null,

48 item.getProduct().getName(), null

49);

50 }

51 double total, tA;

52 double ltN = 0;

53 double ttA = 0;

54 double gtA = 0;

55 for (Map.Entry<Double, Double> t : taxes.entrySet()) {

4. Creating XML Invoices with iText 33

56 tax = t.getKey();

57 total = round(t.getValue());

58 gtA += total;

59 tA = round((100 * total) / (100 + tax));

60 ttA += (total - tA);

61 ltN += tA;

62 profileImp.addApplicableTradeTax(

63 format2dec(total - tA), "EUR", TaxTypeCode.VALUE_ADDED_TAX,

64 null, format2dec(tA), "EUR",

65 TaxCategoryCode.STANDARD_RATE, format2dec(tax));

66 }

67 profileImp.setMonetarySummation(format2dec(ltN), "EUR",

68 format2dec(0), "EUR",

69 format2dec(0), "EUR",

70 format2dec(ltN), "EUR",

71 format2dec(ttA), "EUR",

72 format2dec(gtA), "EUR");

73 }

When browsing the code, you see that we can leave certain values empty ("") or pass null as a
value. This isn’t always true. iText will throw a DataIncompleteException when you try to make
an XML based on incomplete data. As explained earlier, an InvalidDataException is thrown when
the wrong data is provided, although iText doesn’t check all the codes you pass.

Validation of the data

Table 4.1 shows an overview of the checker classes that will be used once iText creates an XML file
based on your implementation of the IBasicProfile or the IComfortProfile interface:

Table 4.1: Checker classes for the Basic and Comfort profile

Checker class Description Profile

NumberChecker Can be used to check if a number is an integer or a
decimal; if a decimal, checks if it has two or four
decimals.

Basic and higher

CountryCode Just checks if the code consists of two uppercase letters
(no numbers). It doesn’t check if the country code
actually exists. That’s your responsibility.

Basic and higher

CurrencyCode Just checks if the code consists of three uppercase letters
(no numbers). It doesn’t check if the currency code
actually exists. That’s your responsibility.

Basic and higher

4. Creating XML Invoices with iText 34

Table 4.1: Checker classes for the Basic and Comfort profile

Checker class Description Profile

DateFormatCode Contains the three acceptable date formats YYYYMMDD
(code 102), YYYYMM (code 610) and YYYYWW (code 616).
This class also allows you to convert a Date to a String

when given a format, and vice-versa.

Basic and higher

DocumentTypeCode Could be COMMERCIAL_INVOICE (code 380),
DEBIT_NOTE_FINANCIAL_ADJUSTMENT (code 38) and
SELF_BILLED_INVOICE (code 389). iText will check if
you’re using the right profile for the document type.

Basic and higher

LanguageCode Just checks if the code consists of two lowercase letters
(no numbers). It doesn’t check if the language code
actually exists. That’s your responsibility.

Basic and higher

MeasurementUnitCode Contains constants for every possible measurement unit
and checks if a code that was provided is one of these
values.

Basic and higher

TaxIDTypeCode Contains the codes for two types of tax ids (VAT and
FISCAL_NUMBER) and checks if the code that was
provided is one of these values.

Basic and higher

TaxTypeCode Contains the codes for three types of tax
(VALUE_ADDED_TAX, INSURANCE_TAX and
TAX_ON_REPLACEMENT_PART) and checks if the code that
was provided is one of these values

Basic and higher

FreeTextSubjectCode Contains constants for every possible free text subject
(to make it qualified text) and checks if the code that
was provided is one of these values.

Comfort and higher

GlobalIdentifierCode Contains a handful of frequently used codes, but only
checks if the value consists of four numeric values.

Comfort and higher

PaymentMeansCode Contains constants for all the possible payment means
and checks if a code that was provided is one of these
values.

Comfort and higher

TaxCategoryCode Contains the codes for different tax categories and
checks if a code that was provided is one of these values.

Comfort and higher

Text also has checkers that are only important in the context of the Extended profile, but iText doesn’t
generate XMLs using the Extended profile. Companies that need the Extended profile are assumed
to already use specialized EDI software that creates XML that complies with the requirements of
the Extended profile.

Let’s finish this chapter by creating a series of XML files that comply with the Comfort profile.

4. Creating XML Invoices with iText 35

Creating an XML file with iText

Once you have an implementation of the IBasicProfile or the IComfortProfile interface, you can
use it to create an InvoiceDOM object. The actual XML is created as a byte array when you use the
toXML() method. This is shown in the XmlInvoicesComfort²⁹ example:

1 public static void main(String[] args)

2 throws SQLException, ParserConfigurationException, SAXException, IOException,

3 TransformerException, DataIncompleteException, InvalidCodeException {

4 LicenseKey.loadLicenseFile(

5 System.getenv("ITEXT7_LICENSEKEY")

6 + "/itextkey-html2pdf_typography.xml");

7 File file = new File(DEST);

8 file.getParentFile().mkdirs();

9 PojoFactory factory = PojoFactory.getInstance();

10 List<Invoice> invoices = factory.getInvoices();

11 InvoiceData invoiceData = new InvoiceData();

12 IBasicProfile comfort;

13 InvoiceDOM dom;

14 for (Invoice invoice : invoices) {

15 comfort = invoiceData.createComfortProfileData(invoice);

16 dom = new InvoiceDOM(comfort);

17 byte[] xml = dom.toXML();

18 FileOutputStream fos = new FileOutputStream(

19 String.format(DEST, invoice.getId()));

20 fos.write(xml);

21 fos.flush();

22 fos.close();

23 }

24 factory.close();

25 }

Observe that we have to load a license key for the pdfInvoice add-on³⁰ (line 4). If you don’t have a
license key, you should get a trial license³¹.

Just like in the example from chapter 3 where we tested the database, we use the PojoFactory to
get a list of invoices and we loop over every Invoice object. We use the InvoiceData class that was
already discussed to create a IComfortProfile. We pass this profile to the InvoiceDOM constructor
as if it were a IBasicProfile instance, but InvoiceDOM is smart enough to see that it’s actually a
IComfortProfile instance.

²⁹https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/XmlInvoicesComfort.java
³⁰http://itextpdf.com/itext7/pdfInvoice
³¹http://pages.itextpdf.com/iText-7-Free-Trial-Landing-Page-1.html

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/XmlInvoicesComfort.java
http://itextpdf.com/itext7/pdfInvoice
http://pages.itextpdf.com/iText-7-Free-Trial-Landing-Page-1.html
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/XmlInvoicesComfort.java
http://itextpdf.com/itext7/pdfInvoice
http://pages.itextpdf.com/iText-7-Free-Trial-Landing-Page-1.html

4. Creating XML Invoices with iText 36

In this case, we want the XML as a file, so we write the byte[] to a FileOutputStream. Figures 4.1,
4.2 and 4.3 show what such an XML looks like.

4. Creating XML Invoices with iText 37

We’re halfway creating a ZUGFeRD invoice: we already have the XML, now we need to create the
PDF. That’s what chapter 5 is about.!

5. Creating PDF invoices (Basic profile)
To create a ZUGFeRD invoice, we now have to combine what we’ve learned in chapter 2 “Creating
PDF/A files with iText” with what we’ve learned in chapter 4 “Creating XML Invoices with iText”.

Creating PDF from scratch

In this chapter, we’ll discuss a single example: PdfInvoicesBasic³². In this example we’ll create a PDF
document for every invoice stored in our database. The PDF documents will be ZUGFeRD invoices
using the Basic profile.

Let’s start with the different constants defined in this class:

1 public static final String DEST = "results/zugferd/pdf/basic%05d.pdf";

2 public static final String ICC = "resources/color/sRGB_CS_profile.icm";

3 public static final String REGULAR = "resources/fonts/OpenSans-Regular.ttf";

4 public static final String BOLD = "resources/fonts/OpenSans-Bold.ttf";

5 public static final String NEWLINE = "\n";

We recognize the pattern for the destination files, the color profile (as discussed in chapter 2³³), two
font files, and a string with a newline character.

The main method of this example is very straightforward:

1 public static void main(String[] args)

2 throws IOException, ParserConfigurationException, SQLException,

3 SAXException, TransformerException, ParseException

4 DataIncompleteException, InvalidCodeException {

5 LicenseKey.loadLicenseFile(

6 System.getenv("ITEXT7_LICENSEKEY")

7 + "/itextkey-html2pdf_typography.xml");

8 File file = new File(DEST);

9 file.getParentFile().mkdirs();

10 PdfInvoicesBasic app = new PdfInvoicesBasic();

11 PojoFactory factory = PojoFactory.getInstance();

12 List<Invoice> invoices = factory.getInvoices();

³²https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesBasic.java
³³http://developers.itextpdf.com/content/zugferd-future-invoicing/2-creating-pdfa-files-itext

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesBasic.java
http://developers.itextpdf.com/content/zugferd-future-invoicing/2-creating-pdfa-files-itext
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesBasic.java
http://developers.itextpdf.com/content/zugferd-future-invoicing/2-creating-pdfa-files-itext

5. Creating PDF invoices (Basic profile) 39

13 for (Invoice invoice : invoices) {

14 app.createPdf(invoice);

15 }

16 factory.close();

17 }

In this method, we create an instance of the PdfInvoicesBasic³⁴ class; we get a List of Invoice³⁵
objects from the PojoFactory³⁶; for every invoice, we call the createPdf() method.

1 public void createPdf(Invoice invoice)

2 throws ParserConfigurationException, SAXException, TransformerException,

3 IOException, ParseException, DataIncompleteException, InvalidCodeException {

4

5 String dest = String.format(DEST, invoice.getId());

6

7 // Create the XML

8 InvoiceData invoiceData = new InvoiceData();

9 IBasicProfile basic = invoiceData.createBasicProfileData(invoice);

10 InvoiceDOM dom = new InvoiceDOM(basic);

11

12 // Create the ZUGFeRD document

13 ZugferdDocument pdfDocument = new ZugferdDocument(

14 new PdfWriter(dest), ZugferdConformanceLevel.ZUGFeRDBasic,

15 new PdfOutputIntent("Custom", "", "http://www.color.org",

16 "sRGB IEC61966-2.1", new FileInputStream(ICC)));

17 pdfDocument.addFileAttachment(

18 "ZUGFeRD invoice", dom.toXML(), "ZUGFeRD-invoice.xml",

19 PdfName.ApplicationXml, new PdfDictionary(), PdfName.Alternative);

20

21 // Create the document

22 Document document = new Document(pdfDocument);

23 document.setFont(PdfFontFactory.createFont(REGULAR, true))

24 .setFontSize(12);

25 PdfFont bold = PdfFontFactory.createFont(BOLD, true);

26

27 // Add the header

28 document.add(

29 new Paragraph()

30 .setTextAlignment(TextAlignment.RIGHT)

³⁴https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesBasic.java
³⁵https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
³⁶https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesBasic.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesBasic.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/Invoice.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/pojo/PojoFactory.java

5. Creating PDF invoices (Basic profile) 40

31 .setMultipliedLeading(1)

32 .add(new Text(String.format("%s %s\n", basic.getName(), basic.getId()))

33 .setFont(bold).setFontSize(14))

34 .add(convertDate(basic.getDateTime(), "MMM dd, yyyy")));

35 // Add the seller and buyer address

36 document.add(getAddressTable(basic, bold));

37 // Add the line items

38 document.add(getLineItemTable(invoice, bold));

39 // Add the grand totals

40 document.add(getTotalsTable(

41 basic.getTaxBasisTotalAmount(), basic.getTaxTotalAmount(),

42 basic.getGrandTotalAmount(), basic.getGrandTotalAmountCurrencyID(),

43 basic.getTaxTypeCode(), basic.getTaxApplicablePercent(),

44 basic.getTaxBasisAmount(), basic.getTaxCalculatedAmount(),

45 basic.getTaxCalculatedAmountCurrencyID(), bold));

46 // Add the payment info

47 document.add(getPaymentInfo(basic.getPaymentReference(),

48 basic.getPaymentMeansPayeeFinancialInstitutionBIC(),

49 basic.getPaymentMeansPayeeAccountIBAN()));

50

51 document.close();

52 }

This createPdf() method consists of different parts:

• We construct a file name (line 5) and we use the InvoiceData³⁷ class (line 8) that was discussed
in chapter 4³⁸ to create an IBasicProfile instance (line 9).We use this IBasicProfile instance
to create an InvoiceDOM object (line 8). InvoiceDOM is one of the classes available in the
pdfInvoice add-on.

• We construct a ZugferdDocument instance (line 13) and we set the conformance level to
ZUGFeRDBasic for the basic profile (line 14). We also add the output intent (line 15-16). We
add the XML invoice as an attachment (line 17-19).

• Then we create the document (line 22), and we add the content: a header (line 28-34), the
address information of the seller and the buyer (line 36), the line items (line 38), the grand
total and the tax information (line 40-45), and the payment information (line 47-49).

We create the header paragraph in the createPdf() method (lines 28-34), but we’re using helper
methods for the other content. Let’s take a closer look at those methods.

³⁷https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/data/InvoiceData.java
³⁸http://developers.itextpdf.com/content/zugferd-future-invoicing/4-creating-xml-invoices-itext

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/data/InvoiceData.java
http://developers.itextpdf.com/content/zugferd-future-invoicing/4-creating-xml-invoices-itext
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/data/InvoiceData.java
http://developers.itextpdf.com/content/zugferd-future-invoicing/4-creating-xml-invoices-itext

5. Creating PDF invoices (Basic profile) 41

Adding the seller and buyer addresses

Creating a PDF from scratch using iText is easy, but not trivial. It’s easy, because you can use many
different high-level objects, but it’s not trivial as you have to create a design by writing code. In
chapter 6³⁹, we’ll see an alternative way to create PDF invoices that doesn’t require you to write
much code.

Most of the data that needs to be rendered is available through the IBasicProfile interface. See for
instance the getAddressTable() method:

1 public Table getAddressTable(IBasicProfile basic, PdfFont bold) {

2 Table table = new Table(new UnitValue[]{

3 new UnitValue(UnitValue.PERCENT, 50),

4 new UnitValue(UnitValue.PERCENT, 50)})

5 .setWidthPercent(100);

6 table.addCell(getPartyAddress("From:",

7 basic.getSellerName(),

8 basic.getSellerLineOne(),

9 basic.getSellerLineTwo(),

10 basic.getSellerCountryID(),

11 basic.getSellerPostcode(),

12 basic.getSellerCityName(),

13 bold));

14 table.addCell(getPartyAddress("To:",

15 basic.getBuyerName(),

16 basic.getBuyerLineOne(),

17 basic.getBuyerLineTwo(),

18 basic.getBuyerCountryID(),

19 basic.getBuyerPostcode(),

20 basic.getBuyerCityName(),

21 bold));

22 table.addCell(getPartyTax(basic.getSellerTaxRegistrationID(),

23 basic.getSellerTaxRegistrationSchemeID(), bold));

24 table.addCell(getPartyTax(basic.getBuyerTaxRegistrationID(),

25 basic.getBuyerTaxRegistrationSchemeID(), bold));

26 return table;

27 }

We create a table with two columns, and we use convenience methods to create the Cell instances:

³⁹http://developers.itextpdf.com/content/zugferd-future-invoicing/6-creating-html-invoices

http://developers.itextpdf.com/content/zugferd-future-invoicing/6-creating-html-invoices
http://developers.itextpdf.com/content/zugferd-future-invoicing/6-creating-html-invoices

5. Creating PDF invoices (Basic profile) 42

1 public Cell getPartyAddress(String who, String name,

2 String line1, String line2, String countryID,

3 String postcode, String city, PdfFont bold) {

4 Paragraph p = new Paragraph()

5 .setMultipliedLeading(1.0f)

6 .add(new Text(who).setFont(bold)).add(NEWLINE)

7 .add(name).add(NEWLINE)

8 .add(line1).add(NEWLINE)

9 .add(line2).add(NEWLINE)

10 .add(String.format("%s-%s %s", countryID, postcode, city));

11 Cell cell = new Cell()

12 .setBorder(Border.NO_BORDER)

13 .add(p);

14 return cell;

15 }

16 public Cell getPartyTax(String[] taxId, String[] taxSchema, PdfFont bold) {

17 Paragraph p = new Paragraph()

18 .setFontSize(10).setMultipliedLeading(1.0f)

19 .add(new Text("Tax ID(s):").setFont(bold));

20 if (taxId.length == 0) {

21 p.add("\nNot applicable");

22 }

23 else {

24 int n = taxId.length;

25 for (int i = 0; i < n; i++) {

26 p.add(NEWLINE)

27 .add(String.format("%s: %s", taxSchema[i], taxId[i]));

28 }

29 }

30 return new Cell().setBorder(Border.NO_BORDER).add(p);

31 }

With these helper methods, we already have the “upper part” of the invoice as shown in Figure 5.1.

5. Creating PDF invoices (Basic profile) 43

Figure 5.1: first part of the invoice

We’ll also use a Table to render the invoice lines.

Adding invoice lines

The part with the invoice lines is a Table with six columns that is created like this:

1 public Table getLineItemTable(Invoice invoice, PdfFont bold) {

2 Table table = new Table(

3 new UnitValue[]{

4 new UnitValue(UnitValue.PERCENT, 43.75f),

5 new UnitValue(UnitValue.PERCENT, 12.5f),

6 new UnitValue(UnitValue.PERCENT, 6.25f),

7 new UnitValue(UnitValue.PERCENT, 12.5f),

8 new UnitValue(UnitValue.PERCENT, 12.5f),

9 new UnitValue(UnitValue.PERCENT, 12.5f)})

10 .setWidthPercent(100)

11 .setMarginTop(10).setMarginBottom(10);

12 table.addHeaderCell(createCell("Item:", bold));

13 table.addHeaderCell(createCell("Price:", bold));

14 table.addHeaderCell(createCell("Qty:", bold));

15 table.addHeaderCell(createCell("Subtotal:", bold));

16 table.addHeaderCell(createCell("VAT:", bold));

17 table.addHeaderCell(createCell("Total:", bold));

18 Product product;

19 for (Item item : invoice.getItems()) {

20 product = item.getProduct();

21 table.addCell(createCell(product.getName()));

22 table.addCell(createCell(

23 InvoiceData.format2dec(InvoiceData.round(product.getPrice())))

5. Creating PDF invoices (Basic profile) 44

24 .setTextAlignment(TextAlignment.RIGHT));

25 table.addCell(createCell(String.valueOf(item.getQuantity()))

26 .setTextAlignment(TextAlignment.RIGHT));

27 table.addCell(createCell(

28 InvoiceData.format2dec(InvoiceData.round(item.getCost())))

29 .setTextAlignment(TextAlignment.RIGHT));

30 table.addCell(createCell(

31 InvoiceData.format2dec(InvoiceData.round(product.getVat())))

32 .setTextAlignment(TextAlignment.RIGHT));

33 table.addCell(createCell(

34 InvoiceData.format2dec(InvoiceData.round(

35 item.getCost() + ((item.getCost() * product.getVat()) / 100))))

36 .setTextAlignment(TextAlignment.RIGHT));

37 }

38 return table;

39 }

Again we use some helper methods to create Cell objects:

1 public Cell createCell(String text) {

2 return new Cell().setPadding(0.8f)

3 .add(new Paragraph(text)

4 .setMultipliedLeading(1));

5 }

6 public Cell createCell(String text, PdfFont font) {

7 return new Cell().setPadding(0.8f)

8 .add(new Paragraph(text)

9 .setFont(font).setMultipliedLeading(1));

10 }

The result looks like figure 5.2:

Figure 5.2: rendering the line items of an invoice

We need yet another table for the tax totals and the grand total.

5. Creating PDF invoices (Basic profile) 45

Adding the totals

We add a table with all the totals like this:

1 public Table getTotalsTable(String tBase, String tTax, String tTotal,

2 String tCurrency, String[] type, String[] percentage, String base[],

3 String tax[], String currency[], PdfFont bold) {

4 Table table = new Table(

5 new UnitValue[]{

6 new UnitValue(UnitValue.PERCENT, 8.33f),

7 new UnitValue(UnitValue.PERCENT, 8.33f),

8 new UnitValue(UnitValue.PERCENT, 25f),

9 new UnitValue(UnitValue.PERCENT, 25f),

10 new UnitValue(UnitValue.PERCENT, 25f),

11 new UnitValue(UnitValue.PERCENT, 8.34f)})

12 .setWidthPercent(100);

13 table.addCell(createCell("TAX:", bold));

14 table.addCell(createCell("%", bold)

15 .setTextAlignment(TextAlignment.RIGHT));

16 table.addCell(createCell("Base amount:", bold));

17 table.addCell(createCell("Tax amount:", bold));

18 table.addCell(createCell("Total:", bold));

19 table.addCell(createCell("Curr.:", bold));

20 int n = type.length;

21 for (int i = 0; i < n; i++) {

22 table.addCell(createCell(type[i])

23 .setTextAlignment(TextAlignment.RIGHT));

24 table.addCell(createCell(percentage[i])

25 .setTextAlignment(TextAlignment.RIGHT));

26 table.addCell(createCell(base[i])

27 .setTextAlignment(TextAlignment.RIGHT));

28 table.addCell(createCell(tax[i])

29 .setTextAlignment(TextAlignment.RIGHT));

30 double total = Double.parseDouble(base[i]) + Double.parseDouble(tax[i]);

31 table.addCell(createCell(

32 InvoiceData.format2dec(InvoiceData.round(total)))

33 .setTextAlignment(TextAlignment.RIGHT));

34 table.addCell(createCell(currency[i]));

35 }

36 table.addCell(new Cell(1, 2).setBorder(Border.NO_BORDER));

37 table.addCell(createCell(tBase, bold)

38 .setTextAlignment(TextAlignment.RIGHT));

39 table.addCell(createCell(tTax, bold)

5. Creating PDF invoices (Basic profile) 46

40 .setTextAlignment(TextAlignment.RIGHT));

41 table.addCell(createCell(tTotal, bold)

42 .setTextAlignment(TextAlignment.RIGHT));

43 table.addCell(createCell(tCurrency, bold));

44 return table;

45 }

The code is very similar to what we did for the line items table. The only thing that is out of the
ordinary, is that we create a cell that spans two columns in line 24-25. Figure 5.3 shows the result.

Figure 5.3: rendering the totals

We’re almost there. There only one piece of content missing.

Adding the payment info

Adding the payment info is just a matter of creating a Paragraph:

1 public Paragraph getPaymentInfo(String ref, String[] bic, String[] iban) {

2 Paragraph p = new Paragraph(String.format(

3 "Please wire the amount due to our bank account using "

4 + " the following reference: %s",

5 ref));

6 int n = bic.length;

7 for (int i = 0; i < n; i++) {

8 p.add(NEWLINE).add(String.format("BIC: %s - IBAN: %s", bic[i], iban[i]));

9 }

10 return p;

11 }

Note that we made some assumptions about the payment means. ZUGFeRD allows for different
payment types, but we assumed that payments have to be done by bank wire. The result is shown
in figure 5.4:

Figure 5.4: payment info

5. Creating PDF invoices (Basic profile) 47

In the createPdf() method, we combined all this content with a PDF invoice as result.

The final result

The goal of this example was to create a proof of concept, and Figure 5.5 shows the final result.

Figure 5.5: the resulting invoice

People who want to process the invoice manually, can do so; if they don’t open the attachment panel,
they won’t even notice that there’s an XML attachment inside. People who want to process the
invoice automatically, can extract the XML or have their software extract the XML for processing.

I am aware that this invoice doesn’t look very sexy. We could create tables with rounded borders,
introduce a logo and some colors, we could add an extra sheet with terms-of-use, and so on, but
that would lead us too far. In chapter 7, we’ll discover that there is an alternative way to create PDF
invoices, but let’s take a look at some HTML first.

6. Creating HTML invoices
Please allow me to introduce a short intermezzo. The ZUGFeRD standard doesn’t discuss HTML
anywhere, yet I think it’s useful to dedicate a chapter to the creating of HTML based on the
ZUGFeRD data model. In the next chapter, you’ll discover why.

An XSL for Comfort XMLs

As explained in chapter 5, the XMLs created to comply with the Basic profile don’t contain sufficient
information to create the visual appearance of the corresponding invoice. The XML doesn’t contain
all the information that is needed if we want to render the line items.

This means that we could create an XSL file that takes the info from the ZUGFeRDXML and converts
it into HTML. We’ll do that in the HtmlInvoicesComfort⁴⁰ example. For instance:

<xsl:template match="/rsm:CrossIndustryDocument">

<html>

<head><link rel="stylesheet" type="text/css" href="invoice.css" /></head>

<body>

<xsl:apply-templates /></body>

</html>

</xsl:template>

In this snippet, we match the root tag of the ZUGFeRD XML and we introduce <html>, <head> and
<body>. We’ll use a CSS to apply some styles and colors and an tag to introduce a logo.

The <xsl:apply-templates /> instruction will deal with all the other components. For instance:

<xsl:template match="rsm:HeaderExchangedDocument">

<h1 id="header"><xsl:value-of select="ram:Name" />

<xsl:text> </xsl:text><xsl:value-of select="ram:ID" /></h1>

<xsl:apply-templates select="ram:IssueDateTime" />

</xsl:template>

This XSL snippet in turn applies the templates for what’s inside the <ram:IssueDateTime> tag. In
this case, the following template is called:

⁴⁰https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/HtmlInvoicesComfort.java

https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/HtmlInvoicesComfort.java
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/HtmlInvoicesComfort.java

6. Creating HTML invoices 49

<xsl:template match="udt:DateTimeString">

<h2 id="date"><xsl:choose>

<xsl:when test="@format='610'">

<xsl:call-template name="YYYYMM">

<xsl:with-param name="date" select="." />

</xsl:call-template>

</xsl:when>

<xsl:when test="@format='616'">

<xsl:call-template name="YYYYWW">

<xsl:with-param name="date" select="." />

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="YYYYMMDD">

<xsl:with-param name="date" select="." />

</xsl:call-template>

</xsl:otherwise>

</xsl:choose></h2>

</xsl:template>

This is what a switch looks like in XSL. Depending on the date format, one of the following templates
is called:

<xsl:template name="YYYYMMDD">

<xsl:param name="date" />

<xsl:value-of select="substring($date,1,4)"

/>-<xsl:value-of select="substring($date,5,2)"

/>-<xsl:value-of select="substring($date,7,2)" />

</xsl:template>

<xsl:template name="YYYYMM">

<xsl:param name="date" />

<xsl:value-of select="substring($date,1,4)"

/>-<xsl:value-of select="substring($date,5,2)" />

</xsl:template>

<xsl:template name="YYYYWW">

<xsl:param name="date" />

<xsl:value-of select="substring($date,1,4)"

/>; week <xsl:value-of select="substring($date,5,2)" />

</xsl:template>

We won’t go into further detail, but it shouldn’t be difficult to extend the XSL so that it covers all
the data you want to visualize. You can get some inspiration by looking at the XSL I wrote for this
example and that results in invoices such as the one shown in figure 6.1.

6. Creating HTML invoices 50

Figure 6.1: HTML version of an invoice

That’s not a very attractive invoice yet, so let’s introduce some styles and some color. We’ll do that
using CSS.

Adding some simple CSS

Please compare the result shown in figure 6.1 with the result shown in figure 6.2.

6. Creating HTML invoices 51

Figure 6.2: HTML + CSS version of an invoice

Now we’re getting somewhere, aren’t we? In our XSL, we’ve added some id and some class

attributes, so that we can refer to these elements from a simple CSS file:

6. Creating HTML invoices 52

body { font-family: FreeSans; }

#header { color: #008080; font-size: 18pt; font-weight: bold; }

#date { font-size: 16pt; }

#addresses { margin-top: 20pt; font-size: 11pt; }

#products { margin-top: 10pt; border: 3px solid #008080; }

#totals { margin-top: 10pt; border: 3px solid #008080; }

#wireinfo { margin-top: 10pt; margin-left: 72pt; }

.name { font-weight: bold; color: #008080; }

.total { font-weight: bold; color: #008080; }

.headerrow { background-color: #008080; color: #FFFFFF; }

.bold { font-weight: bold; }

.wireheader { font-weight: bold; text-align: left; }

th { padding: 2pt; font-weight: bold; text-align: center; }

td { padding: 2pt; }

Let’s take a look at the Java code that was used to produce these HTML pages.

Transforming XML to HTML using XSL and Java

We start by defining some constants, more specifically the pattern for the paths of the resulting
HTML files, and the paths to the XSL, CSS, and logo file.

1 public static final String DEST = "results/zugferd/html/comfort%05d.html";

2 public static final String XSL = "resources/zugferd/invoice.xsl";

3 public static final String CSS = "resources/zugferd/invoice.css";

4 public static final String LOGO = "resources/zugferd/logo.png";

In the main method, we copy the resources (the CSS and the image) to the directory where we’ll
generate our HTML. The rest of the code is similar to what we had in chapter 5: we loop over the
invoices obtained from the PojoFactory and we call a createHtml() method.

1 public static void main(String[] args)

2 throws SQLException, IOException,

3 ParserConfigurationException, SAXException, TransformerException,

4 DataIncompleteException, InvalidCodeException {

5 LicenseKey.loadLicenseFile(

6 System.getenv("ITEXT7_LICENSEKEY")

7 + "/itextkey-html2pdf_typography.xml");

8 File file = new File(DEST);

9 file.getParentFile().mkdirs();

10 File css = new File(CSS);

6. Creating HTML invoices 53

11 copyFile(css, new File(file.getParentFile(), css.getName()));

12 File logo = new File(LOGO);

13 copyFile(logo, new File(file.getParentFile(), logo.getName()));

14 HtmlInvoicesComfort app = new HtmlInvoicesComfort();

15 PojoFactory factory = PojoFactory.getInstance();

16 List<Invoice> invoices = factory.getInvoices();

17 for (Invoice invoice : invoices) {

18 app.createHtml(invoice,

19 new FileWriter(String.format(DEST, invoice.getId())));

20 }

21 factory.close();

22 }

In the createHtml()method, we use the InvoiceData class to create an IComfortProfile instance.
We then use standard Java code to convert XML using XSL.

1 public void createHtml(Invoice invoice, Writer writer)

2 throws IOException, ParserConfigurationException, SAXException,

3 DataIncompleteException, InvalidCodeException, TransformerException {

4 IComfortProfile comfort =

5 new InvoiceData().createComfortProfileData(invoice);

6 InvoiceDOM dom = new InvoiceDOM(comfort);

7 StreamSource xml = new StreamSource(new ByteArrayInputStream(dom.toXML()));

8 StreamSource xsl = new StreamSource(new File(XSL));

9 TransformerFactory factory = TransformerFactory.newInstance();

10 Transformer transformer = factory.newTransformer(xsl);

11 transformer.transform(xml, new StreamResult(writer));

12 writer.flush();

13 writer.close();

14 }

I’m adding the copyFile() method for the sake of completeness. We’re copying the files from the
resources to the output directory because we defined the paths to the CSS and the image using
relative links.

6. Creating HTML invoices 54

1 private static void copyFile(File source, File dest) throws IOException {

2 InputStream input = new FileInputStream(source);

3 OutputStream output = new FileOutputStream(dest);

4 byte[] buf = new byte[1024];

5 int bytesRead;

6 while ((bytesRead = input.read(buf)) > 0) {

7 output.write(buf, 0, bytesRead);

8 }

9 input.close();

10 output.close();

11 }

We could tweak the XSL and the CSS to produce an even nicer HTML document, but as I explained:
invoices in HTML are outside the scope of ZUGFeRD. Let’s move on to the next chapter to find out
why we introduced this intermezzo.

7. Creating PDF invoices (Comfort)
iText 7 is a PDF library with several add-ons, one of which is called pdfHTML⁴¹. The pdfHTML⁴²
add-on is a powerful HTML to PDF conversion tool. I takes an HTML or HTML5 file, and converts
it to PDF, taking into account CSS and media queries. Incidentally, we have just created a batch of
invoices in the HTML format. I wonder if we could convert those to ZUGFeRD invoices…

Converting XML to HTML, and HTML to PDF

Please take a look at the PdfInvoicesComfort⁴³ example. We’ll reuse some of the code from the
example in chapter 6⁴⁴, but instead of merely a createHtml()method, we’ll now call a createPdf()
method:

1 public static void main(String[] args)

2 throws SQLException, IOException,

3 ParserConfigurationException, SAXException, TransformerException,

4 DataIncompleteException, InvalidCodeException {

5 LicenseKey.loadLicenseFile(

6 System.getenv("ITEXT7_LICENSEKEY")

7 + "/itextkey-html2pdf_typography.xml");

8 File file = new File(DEST);

9 file.getParentFile().mkdirs();

10 PdfInvoicesComfort app = new PdfInvoicesComfort();

11 PojoFactory factory = PojoFactory.getInstance();

12 List<Invoice> invoices = factory.getInvoices();

13 for (Invoice invoice : invoices) {

14 app.createPdf(invoice,

15 new FileOutputStream(String.format(DEST, invoice.getId())));

16 }

17 factory.close();

18 }

That createPdf() method will create an HTML file first, and then convert it to PDF:

⁴¹http://itextpdf.com/itext7/pdfHTML
⁴²http://itextpdf.com/itext7/pdfHTML
⁴³https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesComfort.java
⁴⁴http://developers.itextpdf.com/content/zugferd-future-invoicing/6-creating-html-invoices

http://itextpdf.com/itext7/pdfHTML
http://itextpdf.com/itext7/pdfHTML
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesComfort.java
http://developers.itextpdf.com/content/zugferd-future-invoicing/6-creating-html-invoices
http://itextpdf.com/itext7/pdfHTML
http://itextpdf.com/itext7/pdfHTML
https://git.itextsupport.com/projects/I7JS/repos/zugferd/browse/src/main/java/com/itextpdf/zugferd/PdfInvoicesComfort.java
http://developers.itextpdf.com/content/zugferd-future-invoicing/6-creating-html-invoices

7. Creating PDF invoices (Comfort) 56

1 public void createPdf(Invoice invoice, FileOutputStream fos)

2 throws IOException, ParserConfigurationException,

3 SAXException, TransformerException,

4 DataIncompleteException, InvalidCodeException {

5 IComfortProfile comfort =

6 new InvoiceData().createComfortProfileData(invoice);

7 InvoiceDOM dom = new InvoiceDOM(comfort);

8 StreamSource xml = new StreamSource(

9 new ByteArrayInputStream(dom.toXML()));

10 StreamSource xsl = new StreamSource(new File(XSL));

11 TransformerFactory factory = TransformerFactory.newInstance();

12 Transformer transformer = factory.newTransformer(xsl);

13 ByteArrayOutputStream baos = new ByteArrayOutputStream();

14 Writer htmlWriter = new OutputStreamWriter(baos);

15 transformer.transform(xml, new StreamResult(htmlWriter));

16 htmlWriter.flush();

17 htmlWriter.close();

18 byte[] html = baos.toByteArray();

19

20 ZugferdDocument pdfDocument = new ZugferdDocument(

21 new PdfWriter(fos), ZugferdConformanceLevel.ZUGFeRDComfort,

22 new PdfOutputIntent("Custom", "", "http://www.color.org",

23 "sRGB IEC61966-2.1", new FileInputStream(INTENT)));

24 pdfDocument.addFileAttachment(

25 "ZUGFeRD invoice", dom.toXML(), "ZUGFeRD-invoice.xml",

26 PdfName.ApplicationXml, new PdfDictionary(), PdfName.Alternative);

27 pdfDocument.setTagged();

28

29 HtmlConverter.convertToPdf(

30 new ByteArrayInputStream(html), pdfDocument, getProperties());

31 }

The body of this method consists of three parts:

• Line 5-18 are copied from the createHtml() method we created in the previous chapter, but
as you can see in line 19, we don’t create an HTML file that is stored on disk. Instead, we keep
the HTML in memory.

• Line 21-28 start the same way as our example in chapter 5. We create a ZugferdDocument and
we add the XML as an attachment. The line where we tell iText to tag the document isn’t
strictly necessary, but it’s good practice.

• Line 30-31 is new: in chapter 5, we created Paragraph and Table objects, and we added those
object to a Document instance. In this case, we’ll leave the creation of building blocks to the

7. Creating PDF invoices (Comfort) 57

pdfHTML⁴⁵ add-on. The add-on will convert the content of <p> tags to Paragraph objects, the
content of <table> tags to Table objects, and so on.

There are a couple of caveats, though. As we created the HTML in memory, the relative links to
resources such as images and CSS can’t be resolved. That’s why we define a ConverterProperties
instance. That instance is obtained through the getProperties() method:

1 public ConverterProperties getProperties() {

2 if (properties == null) {

3 properties = new ConverterProperties()

4 .setBaseUri("resources/zugferd/");

5 }

6 return properties;

7 }

In the converter properties, we define a base URI. The resources/zugferd/ directory contains the
logo.png and the invoice.css file. Without the base URI, the HTML to PDF conversion process
would never know where to look for ./logo.png or ./css.html.

The ConverterProperties object can also be used to define other properties, such as the Font-

Provider. All ZUGFeRD documents are also PDF/A document, which means that all fonts need
to be embedded. In this case, we used FreeSans as font, as defined in the first line of our CSS file:
body { font-family: FreeSans; } Different fonts of the FreeSans font family are shipped with
the pdfHTML add-on, and the default FontProvider knows where to find that font. If you want to
use another font, you may need to create a custom FontProvider that tells iText where to find the
fonts you need.

The final result

Figure 7.1 shows the resulting PDF. It looks much nicer than the invoices we produced in chapter 5,
doesn’t it?

⁴⁵http://itextpdf.com/itext7/pdfHTML

http://itextpdf.com/itext7/pdfHTML
http://itextpdf.com/itext7/pdfHTML

7. Creating PDF invoices (Comfort) 58

Figure 7.1: a ZUGFeRD invoice created from HTML

If you look at the panel to the left, you can see the effect of the extra line we smuggled into our
code (pdfDocument.setTagged();). As a result, the invoice is now also accessible. The HTML tables
can now also be interpreted as tables by a PDF processor that understands tagged PDF. This is an
example of a future-proof, archivable invoice that can be read by humans (including people who are
visually impaired) as well as by machines.

Before we close, let’s also take a look inside the PDF document. In figure 7.2, we see the root object
of the PDF document, aka the catalog. We also see the /AF (Associated Files) and the /Names entry
We recognize the /EmbeddedFiles name tree that has a single element named "ZUGFeRD invoice".
This refers to a dictionary of filetype /Filespec that is also referred to from the /AF array. The
/AFRelationship is "Altermative", meaning that the PDF document and the attached XML are
alternative presentations of the same content. This is required by the ZUGFeRD standard.

7. Creating PDF invoices (Comfort) 59

Figure 7.2: The Associated File

Figure 7.3 shows the XMPmetadata. The document knows that it’s a PDF/A-3B document because of
the presence of pdfaid:part="3" and pdfaod:conformance="B" attributes in the rdf:Description.
There are also a number of entries in the zf namespace, that define the profile (zf:ConformanceLevel="COMFORT"),
the name of the XML attachment (zf:DocumentFileName="ZUGFeRD-invoice.xml"), the document
type (zf:DocumentType="INVOICE"), and the version of the XML schema for the invoice data
(zf:Version="1.0").

7. Creating PDF invoices (Comfort) 60

Figure 7.3: The XMP Metadata

You don’t have to worry about these Metadata values or the embedded XMP stream. The pdfInvoice
add-on⁴⁶ automatically takes care of creating this metadata.

⁴⁶http://itextpdf.com/itext7/pdfInvoice

http://itextpdf.com/itext7/pdfInvoice
http://itextpdf.com/itext7/pdfInvoice
http://itextpdf.com/itext7/pdfInvoice

Conclusion
I started this tutorial by explaining that I’m not always happy when I receive an invoice.

In the first chapter of this book, I explained the issues I have with many invoices:

• They aren’t future proof,
• They aren’t accessible,
• Either they can be read by humans but not by machines,
• or the can be read by machines but not by humans.

In the second chapter, I explained how we can fix the first two problems: we can use iText to create
invoices in the PDF/A format so that they are future proof; we can introduce Tagged PDF and
conform with PDF/A level A to make our invoices accessible.

Chapter three introduced a simple database.We have used this database in all the following chapters.

In chapter four, we created invoices in the XML format so that the can be correctly interpreted by
machines. These XML invoices conformed to the Comfort level of the data model of the ZUGFeRD
standard.

In chapter 5 we created invoices that can be read by humans. We added the XML version of the
invoice as an attachment.

Chapter 6 started as a side-track: we wrote some XSL to convert ZUGFeRD XML files to HTML, and
we used CSS to introduce some styles and colors.

We used the HTML files in chapter 7 to create ZUGFeRD invoices with XML Worker.

We hope that this tutorial shows that it’s not that difficult to create ZUGFeRD invoices. First you
implement the ComfortProfile interface. You do so to provide all the information that needs to be
on the invoice. Then you create a design for your invoices using XSL that converts the ZUGFeRD
data model into an HTML file. Optionally, you can add some CSS to define colors and styles. Finally
you use iText and XML Worker to combine all these different elements into a finalized ZUGFeRD
invoice.

This is enterprise-grade technology that every company can afford, whether it’s a large, medium or
even a small business. There is no reason not to adopt ZUGFeRD as your standard for invoices. You
can help realize world-wide implementation of the ZUGFeRD standard. This will yield financial,
technical and operational benefits across the entire economy and across all borders. What are you
waiting for?

	Table of Contents
	Introduction
	1. ZUGFeRD: the core concepts
	The Portable Document Format
	PDF/A: long-term preservation of documents
	PDF as a format for invoices

	Electronic Data Interchange
	Electronic Business eXtensible Markup Language
	Uniform Business Language and the Core Components Library
	The Cross Industry Invoice standard
	Importance of the evolution of EDI standards

	Zentraler User Guide des Forums elektronische Rechnung Deutschland
	The ZUGFeRD Data Model
	The ZUGFeRD Format
	Bridging the Gap between SMBs and EDI

	2. Creating PDF/A files with iText
	Creating a regular PDF file
	Creating a Tagged PDF file
	Creating a PDF/A-3 level B file
	Creating a PDF/A-3 level A file

	3. A simple invoice database
	Database diagram
	Creating database POJOs
	Creating a POJO factory
	Testing the database

	4. Creating XML Invoices with iText
	Interfaces for the Basic and Comfort profile
	Getting and setting the data
	Basic and Comfort profile
	Basic profile
	Comfort profile

	Validation of the data
	Creating an XML file with iText

	5. Creating PDF invoices (Basic profile)
	Creating PDF from scratch
	Adding the seller and buyer addresses
	Adding invoice lines
	Adding the totals
	Adding the payment info

	The final result

	6. Creating HTML invoices
	An XSL for Comfort XMLs
	Adding some simple CSS
	Transforming XML to HTML using XSL and Java

	7. Creating PDF invoices (Comfort)
	Converting XML to HTML, and HTML to PDF
	The final result

	Conclusion

