Bruno Bossola

SOLID Design Principles

‘k GeeCON

e the Jav

About me

C Developer since 1988
Java developer since 1996
XP Coach during 2000-2001

Lead coordinator and co-founder of JUG

Torino in 2001 g&%

Sun Java Champion since 2005

Speaker at Javapolis and Jazoon
onferences

GeeCON

Let's move the Java world!

Agenda

* What design exactly is about?
» Bad design

* Good design

« SOLID principles

» Conclusions

GeeCON

Let's move the Java world!

Warning!

* Most of those slides maps directly various
articles available to the web, expecially
from objectmentor.com (thanks Bob!)

 Note that those articles are dated...
1992-1998!!!

...S0 please don't force me to get here next year!!!!

GeeCON

Let's move the Java world!

Design

« What's the meaning of design?

« What's the difference it compared to
analysis?

‘k GeeCON

Let's move the Java world!

&,

Design

 Why do we need (good) design?

‘k GeeCON

Let's move the Java world!

Design

 How do we know a design is bad?

‘k GeeCON

Let's move the Java world!

S

Design

» Ok, we probably need better criterias :)
* Are there any ,symptoms” of bad design?

)
-

-/ GeeCON

Let's move the Java world!

&,

Rigidity

* the impact of a change is unpredictable

» every change causes a cascade of
changes in dependent modules

* a nice ,two days” work become a kind of
endless marathon

» costs become unpredictable

GeeCON

Let's move the Java world!

Fragility

 the software tends to break in many
places on every change

 the breakage occurs in areas with no
conceptual relationship

* on every fix the software breaks in
unexpected ways

GeeCON

Let's move the Java world!

Immobility

* It's almost impossible to reuse
interesting parts of the software

 the useful modules have too many
dependencies

 the cost of rewriting is less compared to
the risk faced to separate those parts

GeeCON

Let's move the Java world!

Viscosity

* a hack is cheaper to implement than
the solution within the design

* preserving-design moves are difficult to
think and to implement

* It's much easier to do the wrong thing
rather than the right one

GeeCON

Let's move the Java world!

Design

» What's the reason why a design becomes
rigid, fragile, immobile, and viscous?

improper dependencies
between modules

GeeCON

Let's move the Java world!

Good design

* S0, what are the characteristics of a good
design?

high coesion
low coupling

GeeCON

Let's move the Java world!

Good design

 How can we achieve a good design?

.GeeCON

t's move the Java world!

Software Development is not a Jenga game

SOLID

* An acronym of acronyms!
* |t recalls in a single word all the most
Important pricinple of design
— SRP Single Responsabiity Principle
— OCP Open Closed Principle
—LSP Liskov Substitution Principle
— ISP Interface Segregation Principle
= — DIP Dependency Inversion Principle

GeeCON

Let's move the Java world!

BREAK!

« What is the best comment in source code you have
ever encountered? (part 1)

* You may think you know what the following code does.
* But you dont. Trust me.
, * Fiddle with it, and youll spend many a sleepless
* night cursing the moment you thought youd be clever
* enough to "optimize" the code below.
, * Now close this file and go play with something else.

(source: stackoverflow.com)

‘k GeeCON

s move the Java world!

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

GeeCON

et's move the Java world)

Single Responsability Principle

A software module should have one
and only one responsability

« Easier: a software module should have
one reason only to change

» |t translates directly in high coesion

* It's usually hard to see different
responsabilities

GeeCON

Let's move the Java world!

SRP

* |s SRP violated here?

{

interface Modem

public
public
public
public

void dial (String pno);
void hangup () ;

void send(char c);
char recv () ;

GeeCON

Let's move the Java world)

SRP

* |s SRP violated here?

interface Employee

{
public Pay calculate();
public void save();
public void reload();

}

GeeCON

Let's move the Java world)

SRP

* identify things that are changing for
different reasons

» group together things that change for the
same reason

* note the bias compared to "classical" OO

» smells? *Manager, *Controller, *Handler
— you really don't know how to name those

<= — SORP requires very precise names, very
focused classes GeeCON

Let's move the Java world!

OPEN CLOSED PRINCIPLE

Open Chest Surgery Is Not Needed When Putting On A Coat

“GeeCON

e the Java world!

Open Closed Principle

* Modules should be open for extension
but closed to modification

 theorized in 1998 by Bertrand Meyer in a
classical OO book

* you should be able to extend the behavior
of a module without changing it!

GeeCON

Let's move the Java world!

OCP?

void DrawAllShapes (ShapePointer list[], int n)
{

for (int i=0; i<n; i++)

{

struct Shape* s = list[i];
switch (s—>type)
{
case square: DrawSquare ((struct Square¥*)s);
break;
case circle: DrawCircle((struct Circle*)s);
break;

GeeCON

et's move the Java world!

OCP?

public void draw(Shape[] shapes) {
for (Shape shape : shapes) {
switch (shape.getType()) {
case Shape.SQUARE:
draw ((Square) shape) ;
break;
case Shape.CIRCLE:
draw ((Circle) shape);
break;

GeeCON

et's move the Java world!

OCP!

public void draw(Shape[] shapes) {
for (Shape shape : shapes) ({
shape.draw() ;

}

GeeCON

et's move the Java world)

OCP

» Abstraction is the key!

Uncle Bob's recipe

» keep the things that change frequently
away from things that don't change

* If they depend on each other, things that
change frequently should depend upon
<amlhings don't change

GeeCON

Let's move the Java world!

BREAK!

« What is the best comment in source code you have
ever encountered? (part 2)

// I dedicate all this code, all my work, to my wife,
// Darlene, who will have to support me and our three
// children and the dog once it gets released into

// the public.

(source: stackoverflow.com)

X GeeCON

Let's move the Java world!

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

GeeCON

et's move the Java world)

Liskov Substitution Principle

* |f for each object o1 of type S there is an
object 02 of type T such that for all
programs P defined in terms of T, the
behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype
of T.

o

\UN"

GeeCON

Let's move the Java world!

LSP

o Try #2:

* Function that use pointers or
references to base classes must be
able to use objects of derived classes

without knowing it

GeeCON

Let's move the Java world!

LSP

o Try #3:

» Given an entity with a behavior and
some possible sub-entities that could
implement the original behavior, the
caller should not be surprised by
anything if one of the sub entities are

«=nSubstituted to the original entity

) GeeCON

Let's move the Java world!

LSP (by example)

* How would you model the relationship
between a square and a rectangle?

» Should the square class extends
rectangle?

GeeCON

Let's move the Java world!

LSP (by example)

» Of course, isn't the Square a kind of
Rectangle, after all?

e |t seems an obvious ISA

GeeCON

Let's move the Java world!

LSP (by example)

e But... what about:

— rectangle has two attributes, width and height:
how can we deal with that?

— how do we deal with setWidth() and
setHeight() ?

e |s it safe?

GeeCON

Let's move the Java world!

LSP (by example)

 No, behavior is different

* |f | pass a Square to a Rectangle aware
function, then this may fall as it may
assume that width and heigth are
managed separately

« Geometry |= Code

GeeCON

Let's move the Java world!

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

GeeCON

et's move the Java world)

Interface Segregation Principle

» fat classes may happen :(

 usually there are many clients each using
a subset of the methods of such classes

 such client classes depend upon things
they don't use

— what happens when the big class changes?
all depending modules must also change

GeeCON

Let's move the Java world!

ISP

e |SP states that clients should not know
about fat classes

* instead they should rely on clean cohesive
interfaces

* you don't want to depend upon something
you don't use

GeeCON

Let's move the Java world!

BREAK!

« What is the best comment in source code you have
ever encountered? (part 3)

// I'm sorry

(source: stackoverflow.com)

X GeeCON

Let's move the Java world!

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

GeeCON
t's move the Ja

et ava world)

Dependency Inversion Principle

» High level modules should not depend
upon low level modules, both should
depend upon abstractions

* Abstractions should not depend upon
details, details should depend upon
abstractions

GeeCON

Let's move the Java world!

DIP*

enum OutputDevice {printer, disk};

void copy (OutputDevice dev)

{
int c;
while ((c=readKeyboard()) != EOF)
{
i1f (dev == printer)
writePrinter (c);
else
writeDisk (c) ;
}

GeeCON

et's move the Java world!

DIP!

void copy (Reader input, Writer output)

{
int c;
while ((c=input.read()) != EOF) {
output.write(c);

GeeCON

et's move the Java world!

DIP

» don't depend on anything concrete,
depend only upon abstraction

* high level modules should not be forced to
change because of a change in low level /
technology layers

» drives you towards low coupling

GeeCON

Let's move the Java world!

Conclusion

* good design is needed to successfully
deal with change

 the main forces driving your design should
be high cohesion and low coupling

« SOLID principles put you on the right path

e warning: these principles cannot be
=napplied blindly :)

GeeCON

Let's move the Java world!

Q&A

bruno.bossola@jugtorino.it

?k GeeCON

e the Jav

mailto:bruno.bossola@jugtorino.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

